
Algorithm Answer Performance

Exercise 21: Loose Change

Andreas Loibl

November 10, 2010

Algorithm Answer Performance

Inhaltsverzeichnis

1 Algorithm
Example tree
Implementation

2 Answer

3 Performance
Step 1 & 2
Step 3: Caching

Algorithm Answer Performance

Algorithm

Algorithm Answer Performance

Example tree

5 cent

Algorithm Answer Performance

Example tree

5 cent

5

Algorithm Answer Performance

Example tree

5 cent

0 cent

5

Algorithm Answer Performance

Example tree

5 cent

0 cent 3 cent 4 cent

5 2 1

Algorithm Answer Performance

Example tree

5 cent

0 cent 3 cent

1 cent 2 cent

4 cent

5 2 1

2 1

Algorithm Answer Performance

Example tree

5 cent

0 cent 3 cent

1 cent

0 cent

2 cent

1 cent 0 cent

4 cent

5 2 1

2 1

11 2

Algorithm Answer Performance

Example tree

5 cent

0 cent 3 cent

1 cent

0 cent

2 cent

1 cent

0 cent

4 cent

3 cent

2 cent

1 cent

0 cent

5 2 1

2 1

11

1

1

1

1

1

Algorithm Answer Performance

Implementation

in Pseudocode

function splitmoney(cents, lastcoin, path)
if cents = 0 then . termination condition

output path
else

for coin ∈ {200, 100, 50, 20, 10, 5, 2, 1} do
if cents ≥ coin ∧ lastcoin ≥ coin then

newpath← path
append coin to newpath
newcents ← cents − coin
splitmoney(newcents, coin, newpath). recursion

end if
end for

end if
end function

Algorithm Answer Performance

Implementation

in Pseudocode

function splitmoney(cents, lastcoin, path)
if cents = 0 then . termination condition

output path
else

for coin ∈ {200, 100, 50, 20, 10, 5, 2, 1} do
if cents ≥ coin ∧ lastcoin ≥ coin then

newpath← path
append coin to newpath
newcents ← cents − coin
splitmoney(newcents, coin, newpath). recursion

end if
end for

end if
end function

Algorithm Answer Performance

Implementation

in Pseudocode

function splitmoney(cents, lastcoin, path)
if cents = 0 then . termination condition

output path
else

for coin ∈ {200, 100, 50, 20, 10, 5, 2, 1} do
if cents ≥ coin ∧ lastcoin ≥ coin then

newpath← path
append coin to newpath
newcents ← cents − coin
splitmoney(newcents, coin, newpath). recursion

end if
end for

end if
end function

Algorithm Answer Performance

Implementation

in Pseudocode

function splitmoney(cents, lastcoin, path)
if cents = 0 then . termination condition

output path
else

for coin ∈ {200, 100, 50, 20, 10, 5, 2, 1} do
if cents ≥ coin ∧ lastcoin ≥ coin then

newpath← path
append coin to newpath
newcents ← cents − coin
splitmoney(newcents, coin, newpath). recursion

end if
end for

end if
end function

Algorithm Answer Performance

Implementation

in Pseudocode

function splitmoney(cents, lastcoin, path)
if cents = 0 then . termination condition

output path
else

for coin ∈ {200, 100, 50, 20, 10, 5, 2, 1} do
if cents ≥ coin ∧ lastcoin ≥ coin then

newpath← path
append coin to newpath
newcents ← cents − coin
splitmoney(newcents, coin, newpath). recursion

end if
end for

end if
end function

Algorithm Answer Performance

Implementation

in Pseudocode

function splitmoney(cents, lastcoin, path)
if cents = 0 then . termination condition

output path
else

for coin ∈ {200, 100, 50, 20, 10, 5, 2, 1} do
if cents ≥ coin ∧ lastcoin ≥ coin then

newpath← path
append coin to newpath
newcents ← cents − coin
splitmoney(newcents, coin, newpath). recursion

end if
end for

end if
end function

Algorithm Answer Performance

Implementation

in R code

s p l i t money <− funct ion (c e n t s , l a s t c o i n=c e n t s , path=
NULL)

{

i f (c e n t s == 0)
p r i n t (path)

e l s e
fo r (c o i n i n c (200 , 100 , 50 , 20 , 10 , 5 , 2 , 1))
{

i f (c e n t s >= c o i n && l a s t c o i n >= c o i n)
{

s p l i t money (c e n t s−co in , co in , c (path , c o i n))

}

}

}

Algorithm Answer Performance

Implementation

in R code (returning a list)

s p l i t money <− funct ion (c e n t s , l a s t c o i n=c e n t s , path=
NULL)

{
r e s <− l i s t (NULL) ; r e s [[1]] <− NULL
i f (c e n t s == 0)

return (l i s t (path))

f o r (c o i n i n c (200 , 100 , 50 , 20 , 10 , 5 , 2 , 1))
{

i f (c e n t s >= c o i n && l a s t c o i n >= c o i n)
{

f o r (sequence i n s p l i t money (c e n t s−co in , co in ,
c (path , c o i n)))

r e s [[length (r e s) +1]] <− sequence
}

}
return (r e s)

}

Algorithm Answer Performance

Implementation

format list more human readable (collapsed)

format output <− f u n c t i o n (data)
{

r e s <− l i s t (NULL) ; r e s [[1]] <− NULL
f o r (c o i n s i n data)
{

output <− cha r a c t e r ()
c o i n s . r l e <− r l e (c o i n s)
c o i n s . data <− data . frame (c o i n = co i n s . r l e $ va l u e s , count = co i n s . r l e $ l e n g t h s)
f o r (i i n 1 : l eng th (c o i n s . data$count))

output <− c (output , paste (c (c o i n s . data$ co i n [i] , c o i n s . data$count [i]) ,
c o l l a p s e=” cent x ”))

r e s [[l eng th (r e s) +1]] <− output
}
r e t u r n (r e s)

}

output example

“5 cent x 3” “2 cent x 2” “1 cent x 1” instead of “5 5 5 2 2 1”

Algorithm Answer Performance

Answer

Algorithm Answer Performance

Question

How many different ways can e 2.50 be made using any number of
coins?

> source (” ex21 l o o s e change . R”)
> a <− s p l i t money (2 5 0)
> length (a)
[1] 200187

Answer

There are 200187 different ways e 2.50 can be made of coins.

Algorithm Answer Performance

Performance

Algorithm Answer Performance

So you see that this algorithm works, but you should have a
look at the performance

If you try to compute the number this way you will notice how
slow it is and how long it takes to finish

On this machine1 it took almost 12 minutes

This bad performance is caused by the recursion which calls
itself very often (exponentially!)

In order to speed up the calculation I rewrote the algorithm:

Step 1: only calculate the number of possible ways, do not
create a list of them
Step 2: replace for-loop with R’s apply-function
Step 3: add a cache for the calculated values (very important!)

1ThinkPad X200 with Intel Core2 Duo P8600

Algorithm Answer Performance

So you see that this algorithm works, but you should have a
look at the performance

If you try to compute the number this way you will notice how
slow it is and how long it takes to finish

On this machine1 it took almost 12 minutes

This bad performance is caused by the recursion which calls
itself very often (exponentially!)

In order to speed up the calculation I rewrote the algorithm:

Step 1: only calculate the number of possible ways, do not
create a list of them
Step 2: replace for-loop with R’s apply-function
Step 3: add a cache for the calculated values (very important!)

1ThinkPad X200 with Intel Core2 Duo P8600

Algorithm Answer Performance

So you see that this algorithm works, but you should have a
look at the performance

If you try to compute the number this way you will notice how
slow it is and how long it takes to finish

On this machine1 it took almost 12 minutes

This bad performance is caused by the recursion which calls
itself very often (exponentially!)

In order to speed up the calculation I rewrote the algorithm:

Step 1: only calculate the number of possible ways, do not
create a list of them
Step 2: replace for-loop with R’s apply-function
Step 3: add a cache for the calculated values (very important!)

1ThinkPad X200 with Intel Core2 Duo P8600

Algorithm Answer Performance

So you see that this algorithm works, but you should have a
look at the performance

If you try to compute the number this way you will notice how
slow it is and how long it takes to finish

On this machine1 it took almost 12 minutes

This bad performance is caused by the recursion which calls
itself very often (exponentially!)

In order to speed up the calculation I rewrote the algorithm:

Step 1: only calculate the number of possible ways, do not
create a list of them
Step 2: replace for-loop with R’s apply-function
Step 3: add a cache for the calculated values (very important!)

1ThinkPad X200 with Intel Core2 Duo P8600

Algorithm Answer Performance

So you see that this algorithm works, but you should have a
look at the performance

If you try to compute the number this way you will notice how
slow it is and how long it takes to finish

On this machine1 it took almost 12 minutes

This bad performance is caused by the recursion which calls
itself very often (exponentially!)

In order to speed up the calculation I rewrote the algorithm:

Step 1: only calculate the number of possible ways, do not
create a list of them
Step 2: replace for-loop with R’s apply-function
Step 3: add a cache for the calculated values (very important!)

1ThinkPad X200 with Intel Core2 Duo P8600

Algorithm Answer Performance

Step 1 & 2

c o i n s . a v a i l a b l e <− c (200 , 100 , 50 , 20 , 10 , 5 , 2 , 1)

ways to s p l i t money <− f u n c t i o n (cent s , l a s t c o i n =0)
{

i f (! l a s t c o i n)
{

l a s t c o i n <− c en t s
}
i f (c e n t s < 2) r e t u r n (1)
c o i n s <− c o i n s . a v a i l a b l e
c o i n s <− c o i n s [which (cent s>=co i n s)]
c o i n s <− c o i n s [which (l a s t c o i n>=co i n s)]
r e t u r n (sum (s app l y (co i n s , f u n c t i o n (c o i n) ways to s p l i t money (cent s−co in , c o i n))

))
}

Algorithm Answer Performance

Step 3: Caching

c o i n s . a v a i l a b l e <− c (200 , 100 , 50 , 20 , 10 , 5 , 2 , 1)

ways to s p l i t money <− f u n c t i o n (cent s , l a s t c o i n =0)
{

i f (! l a s t c o i n)
{

cache <<− matr i x (0 , cent s , l eng th (c o i n s . a v a i l a b l e))

l a s t c o i n <− c en t s
}
use cache <− f u n c t i o n (cent s , l a s t c o i n , v a l u e=0)

{

i f (! l a s t c o i n | | ! l a s t c o i n %i n% co i n s . a v a i l a b l e) r e t u r n (v a l u e)

i f (v a l u e) cache [cent s , which (c o i n s . a v a i l a b l e==l a s t c o i n)] <<− v a l u e

r e t u r n (cache [cent s , which (c o i n s . a v a i l a b l e==l a s t c o i n)])

}
i f (c e n t s < 2) r e t u r n (1)

i f (use cache (cent s , l a s t c o i n)>0) r e t u r n (use cache (cent s , l a s t c o i n))

c o i n s <− c o i n s . a v a i l a b l e
c o i n s <− c o i n s [which (cent s>=co i n s)]
c o i n s <− c o i n s [which (l a s t c o i n>=co i n s)]
r e t u r n (

use cache (cent s , l a s t c o i n ,

sum (s app l y (co i n s , f u n c t i o n (c o i n) ways to s p l i t money (cent s−co in , c o i n)))
))

}

Algorithm Answer Performance

Step 3: Caching

> cache
[, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8]

[1 ,] 0 0 0 0 0 0 0 0
[2 ,] 0 0 0 0 0 0 2 1
[3 ,] 0 0 0 0 0 0 2 1
[4 ,] 0 0 0 0 0 0 3 1
[5 ,] 0 0 0 0 0 4 3 1
[6 ,] 0 0 0 0 0 0 4 1
[7 ,] 0 0 0 0 0 0 4 1
[8 ,] 0 0 0 0 0 0 5 1
[9 ,] 0 0 0 0 0 0 5 1

[1 0 ,] 0 0 0 11 11 10 6 1
[1 1 ,] 0 0 0 0 0 0 6 1
[1 2 ,] 0 0 0 0 0 0 7 1
[1 3 ,] 0 0 0 0 0 0 7 1
[1 4 ,] 0 0 0 0 0 0 8 1
[1 5 ,] 0 0 0 0 0 18 8 1
[1 6 ,] 0 0 0 0 0 0 9 1
[1 7 ,] 0 0 0 0 0 0 9 1
[1 8 ,] 0 0 0 0 0 0 10 1
[1 9 ,] 0 0 0 0 0 0 10 1
[2 0 ,] 0 0 0 41 40 29 11 1
(. . .)
[5 0 ,] 451 451 451 450 341 146 26 1
(. . .)

[2 5 0 ,] 0 0 0 0 0 0 0 0

Algorithm Answer Performance

Step 3: Caching

$ time . / ex21 l o o s e change .R 250 # 2.50 EUR i n c o i n s
[1] 200187
r e a l 0m0.269 s
$ time . / ex21 l o o s e change .R 1000 # 10 EUR i n c o i n s
[1] 321335886
r e a l 0m0.598 s
$ time . / ex21 l o o s e change .R 10000 # 100 EUR i n c o i n s
[1] 1 .133873 e+15
r e a l 0m4.538 s
$ time . / ex21 l o o s e change .R 50000 # 500 EUR i n c o i n s
[1] 7 .963173 e+19
r e a l 0m22 .145 s

Result

Huge speed improvement by implementing the cache

	Algorithm
	Example tree
	Implementation

	Answer
	Performance
	Step 1 & 2
	Step 3: Caching

