Exercise 21: Loose Change

Andreas Loibl

November 10, 2010

Inhaltsverzeichnis

@ Algorithm
@ Example tree
@ Implementation

© Answer

© Performance
@ Step1 &2
@ Step 3: Caching

Algorithm

Algorithm

Algorithm
°

Example tree

Algorithm
°

Example tree

Algorithm
°
Example tree

Algorithm
°
Example tree

Algorithm
°
Example tree

Algorithm
°
Example tree

’Ocent‘ llcent‘ ’0cent‘

Algorithm
°
Example tree

Algorithm
9000

Implementation

in Pseudocode

function SPLITMONEY (cents, lastcoin, path)

Algorithm
9000

Implementation

in Pseudocode

function SPLITMONEY (cents, lastcoin, path)
if cents = 0 then > termination condition
output path

Algorithm
9000

Implementation

in Pseudocode

function SPLITMONEY (cents, lastcoin, path)

if cents = 0 then > termination condition
output path
else

for coin € {200,100,50,20,10,5,2,1} do

Algorithm
9000

Implementation

in Pseudocode

function SPLITMONEY (cents, lastcoin, path)

if cents = 0 then > termination condition
output path
else

for coin € {200, 100, 50, 20,10,5,2,1} do
if cents > coin A lastcoin > coin then

Algorithm
9000

Implementation

in Pseudocode

function SPLITMONEY (cents, lastcoin, path)

if cents = 0 then > termination condition
output path
else

for coin € {200, 100, 50, 20,10,5,2,1} do
if cents > coin A lastcoin > coin then
newpath <— path
append coin to newpath
newcents < cents — coin

Algorithm
9000

Implementation

in Pseudocode

function SPLITMONEY (cents, lastcoin, path)

if cents = 0 then > termination condition
output path
else

for coin € {200, 100, 50, 20,10,5,2,1} do
if cents > coin A lastcoin > coin then
newpath <— path
append coin to newpath
newcents < cents — coin
SPLITMONEY (newcents, coin, newpath)> recursion
end if
end for
end if
end function

Algorithm
0®00

Implementation

in R code

split _money <— function(cents,h lastcoin=cents , path=

NULL)
{

if (cents = 0)
print (path)
else
for(coin in c(200, 100, 50, 20, 10, 5, 2, 1))

{

if (cents >= coin && lastcoin >= coin)

{

split _money(cents—coin, coin, c(path, coin))

Algorithm
coeo

Implementation

in R code (returning a list)

split _money <— function(cents,h lastcoin=cents , path=
NULL)
{

res <— list (NULL); res[[1]] <— NULL
if (cents = 0)
return(list (path))

for(coin in c(200, 100, 50, 20, 10, 5, 2, 1))
{

if (cents >= coin && lastcoin >= coin)
{
for(sequence in split_money(cents—coin, coin,
c(path, coin)))
res [[length(res)+1]] <— sequence
}
}

return(res)

Algorithm
ocooe

Implementation

format list more human readable (collapsed)

format _output <— function(data)

{
res <— list (NULL); res[[1]] <— NULL
for(coins in data)

output <— character()
coins.rle <— rle(coins)
coins.data <— data.frame(coin = coins.rle$values
for(i in 1:length(coins.data$count))
output <— c(output, paste(c(coins.data$coin][i]
collapse=" cent x "))
res [[length(res)+1]] <— output

, count = coins.rleS$lengths)

, coins.data$count[i]),

return(res)

}

output example

“b cent x 3" “2 cent x 2" “1 cent x 1” instead of 65522 1"

Answer

Answer

Answer

How many different ways can €2.50 be made using any number of
coins?

> source("ex21_loose _change.R")
> a <— split_money(250)

> length(a)

[1] 200187

There are 200187 different ways €2.50 can be made of coins.

Performance

Performance

@ So you see that this algorithm works, but you should have a
look at the performance

Performance

@ So you see that this algorithm works, but you should have a
look at the performance

@ If you try to compute the number this way you will notice how
slow it is and how long it takes to finish

Performance

@ So you see that this algorithm works, but you should have a
look at the performance

@ If you try to compute the number this way you will notice how
slow it is and how long it takes to finish

@ On this machine! it took almost 12 minutes

1ThinkPad X200 with Intel Core2 Duo P8600

Performance

@ So you see that this algorithm works, but you should have a
look at the performance

@ If you try to compute the number this way you will notice how
slow it is and how long it takes to finish

@ On this machine! it took almost 12 minutes

@ This bad performance is caused by the recursion which calls
itself very often (exponentially!)

1ThinkPad X200 with Intel Core2 Duo P8600

Performance

@ So you see that this algorithm works, but you should have a
look at the performance

@ If you try to compute the number this way you will notice how
slow it is and how long it takes to finish

@ On this machine! it took almost 12 minutes

@ This bad performance is caused by the recursion which calls
itself very often (exponentially!)
@ In order to speed up the calculation | rewrote the algorithm:

e Step 1: only calculate the number of possible ways, do not
create a list of them

e Step 2: replace for-loop with R’s apply-function

e Step 3: add a cache for the calculated values (very important!)

1ThinkPad X200 with Intel Core2 Duo P8600

Performance

°
Step 1 & 2

coins.available <— ¢(200, 100, 50, 20, 10, 5, 2, 1)
ways_to_split _-money <— function(cents,lastcoin=0)
if(!lastcoin)
lastcoin <— cents

if(cents < 2) return(1)

coins <— coins.available

coins <— coins[which(cents>=coins)]
coins <— coins[which(lastcoin>=coins)]

return (sum(sapply(coins, function(coin) ways_to_split_money(cents—coin, coin))

Performance
®00

Step 3: Caching

coins.available <— ¢(200, 100, 50, 20, 10, 5, 2, 1)
ways_to_split _money <— function(cents, lastcoin=0)

if(!lastcoin)
{

cache <<— matrix (0, cents,length(coins.available))
lastcoin <— cents

use _cache <— function(cents , lastcoin ,value=0)

{
if (! lastcoin || ! lastcoin %in% coins.available) return(value)
if (value) cache[cents,which(coins.available=lastcoin)] <<— value
return(cache[cents ,which(coins.available=lastcoin)])

}

if(cents < 2) return(1)

if (use_cache(cents,lastcoin)>0) return(use_cache(cents, lastcoin))
coins <— coins.available
coins <— coins[which(cents>=coins)]
coins <— coins[which(lastcoin>=coins)]
return (
use _cache(cents, lastcoin ,

sum(sapply(coins, function(coin) ways_to_split_money(cents—coin, coin)))
))

Performance

b0
=
=
]
T
9]
&
o
[
2
(%]

cache

>

—O o

—Oo NANMM T T I0OWO

—OO0OO0OYOO0OO0OO0O
—

—O0OO0O0O0O0O0O0O0OOH
—

—OO0OO0OO0O0COO0OO
—

—OO0OO0OO0OOCOOOOO

—OO0OO0O0O0O0OO0O0OO0OOoO

—OO0O0OO0O0O0O0OOO0OO

0
0
0
0
0

18

10
10
11

29

40

41

11,

12,
13,

451 450 341 146

451

Performance
ooe

Step 3: Caching

$ time ./ex2l_loose_change.R 250 # 2.50 EUR in coins
[1] 200187

real 0m0.269s

$ time ./ex2l_loose_change.R 1000 # 10 EUR in coins
[1] 321335886

real 0m0.598s

$ time ./ex2l_loose_change.R 10000 # 100 EUR in coins
[1] 1.133873e+15

real 0m4.538s

$ time ./ex2l_loose_change.R 50000 # 500 EUR in coins
[1] 7.963173e+19

real 0m22.145s

Huge speed improvement by implementing the cache

	Algorithm
	Example tree
	Implementation

	Answer
	Performance
	Step 1 & 2
	Step 3: Caching

