Analysis

•	_			
7	716	nora	+10	nnn
1.	L JL			nen

- + Addition
- · Multiplikation
- 2. Relationen
 - ≤ kleiner gleich
- 3. Zahlen

3.1. Natürliche Zahlen

 $\mathbb{N} = \{1, 2, 3, 4, ...\}$

3.1.1. Axiom (Wohlordnungsprinzip)

 $\mathbb N$ ist wohlgeordnet, d.h. jede nichtleere Teilmenge $M \subset \mathbb N$ der natürlichen Zahlen hat ein kleinstes Element, also

 $\exists x \in M$

 \forall n \in M

 $x \le n$

3.1.2. Themen (Prinzip der vollständigen Induktion)

Genüge M ∈ N den folgenden Bedingungen:

- (i) 1 ∈ M
- (ii) $n \in M$

 \Rightarrow n +1 \in M

Dann ist M = N

Indirekter Beweis (Beweis durch Widerspruch):

Setze: $Q = \mathbb{N}$ mit $M = \{x \in \mathbb{N} \text{ mit } x \notin M\}$

Widerspruchsannahme: Q ist nicht leer!

Nach dem Wohlordnungsprinzip gibt es dazu ein kleines Element $n_0 \in Q$. Wegen (i) ist $n_0 > 1$ (Ansonsten wäre $1 \in Q$, aber da $1 \in M$ ist, führt dies zu einen Widerspruch). $n_0 - 1$ kann nicht in Q sein, denn n_0 ist das kleinste Element

$$\implies$$
 n₀ - 1 \in M

Wegen (ii) ist dann $(n_0-1)+1=n_0 \in M$

Dies ist ein Widerspruch, da $n_0 \in Q$ ist. Also ist die Widerspruchsannahme falsch und folglich

$$Q = \emptyset$$
 \Longrightarrow $M = \mathbb{N}$

q.e.d.

(Diese Themen können anstatt mit Mengen auch mit Aussageformen formuliert werden)

3.1.3.Thesen

Für eine Aussageform p (n) mit $n \in \mathbb{N}$ sei folglich bekannt:

- (i) p (1) wahr
- (ii) p (n) wahr

=> p(n+1) wahr

Dann ist p (n) wahr \forall n \in N

Beweis:

Betrachte Menge: $M = \{n \in \mathbb{N} \text{ mit p } (n) \text{ wahr} \}$

Dann ist $1 \in M$ und $n \in M => n + 1 \in M$

Nach 3.1. ist $M = \mathbb{N}$. Folglich ist p(n) wahr $\forall n$.

3.1.4. Einschub

- (i) heißt Induktionsänderung
- (ii) heißt Induktionsschluss

3.1.5. Beispiel 1

Für alle $n \in \mathbb{N}$ gilt $s_n \sum_{k=1}^n k = \frac{n(n+1)}{2}$

Beweis:

Sei $M=\{n\in\mathbb{N} \text{ mit } s_n=\frac{n\;(n+1)}{2}\}$ dann gilt:

- (i) $1 \in M$, denn $s_n \sum_{k=1}^n k = 1 \ (\frac{1(1+1)}{2} = 1)$
- (ii) $n \in M$

 \Rightarrow n + 1 \in M

Annahme: $s_n \sum_{k=1}^n k = \frac{n(n+1)}{2}$

(Induktionvoraussetzung)

$$\Rightarrow s_{n+1} = s_n + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)+2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

3.1.6.**Beispiel 2**

Für alle $n \in \mathbb{N}$ gilt $\sum_{k=1}^{n} (2k-1) = n^2$

Beweis:

Verankerung: $\sum_{k=1}^{n} (2k - 1) = (2-1) = 1 = 1^2$

Induktionsschluss:

Annahme, dass $\sum_{k=1}^{n} (2k-1) = n^2$ gilt.

=>
$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n+1} (2k-1) + (2(n+1)-1) = n^2 + 2(n+1)-1 = n^2 + 2n + 1$$

= $(n+1)^2$

3.2. Reelle Zahlen

Es gibt drei Gruppen von Axiome:

- (I) Algebraische Axiome
- (II) Die Anordnungsaxiome
- (III) Vollständigkeitsaxiome

3.2.1. Algebraische Axiome

In R gibt es zwei Operationen, die jedem a, b $\in \mathbb{R}$ ein Element aus \mathbb{R} zuordnet:

Hier gelten mehrere Gesetze:

(A) Assoziativgesetz:
$$(a + b) + c = a + (b + c)$$

(B) Kommutativgesetz:
$$a + b = b + a$$

(C) Neutrales Element:
$$\exists 0 \in \mathbb{R} \text{ mit } a + 0 = a \forall a \in \mathbb{R}$$

(D) Inverses Element:
$$\forall \ a \in \mathbb{R} \ \exists \ b \in \mathbb{R} \ \text{mit } a + b = 0 \ \ (\text{Also ist } R_0 + \text{eine}$$

- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (E) Assoziativgesetz
- (F) Kommutativgesetz $a \cdot b = b \cdot a$
- (G) Neutrales Element $\exists 1 \in \mathbb{R} \text{ mit a} \cdot 1 = \mathsf{a} \, \forall \, \mathsf{a} \in \mathbb{R}$
- (H) Inverses Element zu a Zu jedem a \neq 0, gibt es ein b mit a \cdot b = 1
- (I) <u>Distributivgesetz</u> $a \cdot (b + c) = ab + ac \forall a, b, c \in \mathbb{R}$

Die Axiome (A) – (I) besagen das (\mathbb{R} +) ein Kapir (?!) ist.

Weitere Regeln werden nun abgeleitet:

(1) Die Zahl 0 ist eindeutig. Man nehme an, dass 0, $0' \in \mathbb{R}$ neutrale Elemente sind. Dann ist

$$0 + 0' = 0$$
 (0' = neutrales Element)

$$= 0' + 0 = 0$$
 (0 = neutrales Elemnt)

=> 0 = 0', also ist ein neutrales Element tatsächlich eindeutig

(2) Das Inverse (- a) von a ist eindeutig. Sei $a \in \mathbb{R}$ gegeneben, dann ist a' mit a + a' =0 (also a' ist das Inverse von a)

$$<=> - a = (-a) + (a + a') = ((-a) + a) + a' = 0 + a' = a'$$
 also $(-a) = a'$

$$also(-a) = a'$$

Beweis: a + a' = 0

$$=> b + (a + a') = b + 0 \cdot b => b + (a + a') = b$$

$$=> (-b) + (b + (a + a')) = (-b) + (b)$$

$$=> 0 + (a + a') = 0$$

$$=> a + a' = 0$$

Insgesamt: a + a' = 0 <=> b + (a a') = b

(3) 1 und a^{-1} sind eindeutig (Für Beweis genau wie (1) und (2) ein + durch · und (-a) druch a⁻¹ ersetzen)

$$(4) - (-a) = a$$

$$(-a) + (-b) = -(a + b)$$

$$(a^{-1})^{-1} = a$$

$$a^{-1} \cdot b^{-1} = (ab)^{-1}$$

$$\forall a, b \in R$$
 $a, b \neq 0$

$$a \cdot 0 = 0$$

$$a \cdot (b + (-c)) = ab + (-ac)$$
 oder schreibe einfacher $a - b = a + (-b)$

$$a(b-c) = ab - ac$$

Beweis:

$$a = a + ((-a) - (-a)) = (a + (-a)) - (-a)$$

$$= 0 - (-a) = -(-a)$$

$$a \cdot 0 = 0$$

$$a \cdot 0 = a (0 + 0) = a \cdot 0 + a \cdot 0$$

$$<=> 0 = a \cdot 0$$

$$0 = a \cdot 0 = a (b + (-b)) = ab + a \cdot (-b)$$

$$<=> - (ab) = a (-b)$$

Die anderen Rechenregeln folgen analog.

(5) Aus a \cdot b = 0 folgt, dass wenigstens eine der Zahlen a, b gleich 0 ist. (a = 0 \vee b = 0)

Beweis:

Sei $a \cdot b = 0$ und $a \neq 0$

$$=> a^{-1} \cdot 0 = a^{-1} (a \cdot b) = (a^{-1} \cdot a) b = 1 \cdot b = b$$

$$=> b = 0$$

(6) Regeln des Bruchrechnens

Schreibe a \cdot b⁻¹ = $\frac{a}{b}$

$$\frac{a}{c} + \frac{b}{d} = \frac{ad + cb}{cd} \qquad \forall a, b, c, d \in \mathbb{R}, c, d \neq 0$$

$$\frac{a}{c} \cdot \frac{b}{d} = \frac{a \cdot b}{c \cdot d} \qquad \forall a, b, c, d \in \mathbb{R}, c, d \neq 0$$

$$\frac{\frac{a}{c}}{\frac{b}{c}} = \frac{a \cdot d}{c \cdot b} \qquad b, c, d \neq 0$$

Beweis (Nur für die erste Gleichung, da die anderen Beweise ähnlich sind):

$$a \cdot d \left(\frac{a}{c} + \frac{b}{d}\right) = c \cdot d \cdot \frac{a}{c} + c \cdot d \cdot \frac{b}{d} = a \cdot d + b \cdot c$$

$$<=> \frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$$

3.2.2. Die Anordungsaxiome

Wir haben Relationen <, > und =. Für beliebige a, $b \in \mathbb{R}$ gilt genau eine der drei Relationen:

a < b

b < a

oder

a = b

3.2.2.1. Transitivität

 $a < b \land b < c$

=>

a < c

3.2.2.2. Verträglichkeit (mit Abgeschlossenheit) mit Addition

Aus a < b folge a + c < b + c

 $\forall c \in \mathbb{R}$

3.2.2.3. Verträglichkeit mit Multiplikation

Aus a < b und c > 0 folgt a \cdot c < b \cdot c ("a < b" kann man auch als "b > a" schreiben.)

≤ kleiner gleich (a ≤ b: a < b</p>

V = a = b

≥ größer gleich

> 0 positiv

≥ nicht negativ

< 0 negativ

≤ nicht positiv

Nun werden weitere Regeln abgeleitet:

(7) a < b

<=>

b - a > 0

(#)

a < 0

<=>

- a > 0 - a < 0

a > 0 a < b <=>

- b < - a

Beweis:

Nur (#), die Anderen folgen analog:

a < b

<=>

0 = a + (-a) < b + (-a)

<=>

0 < b + (-a)

(8) Aus a < b und c < d folgt a + c < b + d

Beweis:

a < b

=>

a+c < b+c

c < d

=>

b + c < b + d

(verwendet wird jeweils 3.2.2.2.)

Nach Transitivität (siehe 3.2.2.1.) folgt a + c < b + d

(9)
$$a \cdot b > 0$$
 <=> a

a > 0 und b > 0 oder a < 0 und b < 0

 $a \cdot b < 0$

<=>

a > 0 und b > 0 oder a < 0 und b < 0

Beweis:

<=) Nehme an, dass a > 0 und b > 0, also a < 0 und b < 0

Falls a, b > 0 folgt nach 3.2.2.3. dann a \cdot b > 0 \cdot b = 0

Falls a, b < 0 =>
$$(-a) > 0$$
, $(-b) > 0$

$$=>$$
 $(-a) \cdot (-b) > 0$

Sei a, b > 0. Dann ist a \neq 0 und b \neq 0. =>)

Wie z.B. a > 0 und b < 0

=> a > 0 und b < 0

$$=> 0 > a \cdot (-b) = -(a \cdot b)$$

$$=> a \cdot b > 0$$

Genauer ist a < 0 und b > 0

(10)
$$a \neq 0$$
 <=> $a^2 > 0$, insbesondere ist $1 > 0$

$$(a^2 = a \cdot a)$$

Beweis:

$$a \neq 0$$
 <=> $a > 0$ oder $a < 0$

$$\langle = \rangle$$
 a² > 0 (mit Regel 9)

Es folgt: $1 = 1^2 > 0$

(11)Aus a < b mit c < 0 folgt $a \cdot c > b \cdot c$

Beweis:

Aus c < a folgt (-c) > 0

$$a \cdot (-c) < b \cdot (c)$$

$$-a \cdot c < -b \cdot c$$

$$b \cdot c < a \cdot c$$

$$a > 0$$
 \iff $\longrightarrow 0$

Beweis:

$$a \cdot a^{-1} = 1$$
 > 0

$$=> a > 0$$
 und $a^{-1} > 0$ oder $a < 0$ und $a^{-1} < 0$

(12) Aus
$$a^2 < b^2$$
, $a \ge 0$, $b < 0$ folgt $a < b$

Beweis:

Wäre die Behauptung a < b falsch, dann ware $a \ge b > 0$

- \Rightarrow $a^2 \ge a \cdot b \text{ und } a \cdot b \ge b^2$
- => $a^2 \ge b^2$ (Widerspruch)

3.2.3. Das Vollstädigkeitsaxion (+)

Jede nichtleere, nach oben beschränkte Teilmenge $M \subset \mathbb{R}$ besitzt eine kleinste obere Schranke die Supremum genannt wird

3.2.3.1. **Definition 1**

- (i) Eine nichtleere Teilmenge ($M \subset \mathbb{R}$) heißt nach oben beschränkt, falls es eine Zahl $k \in \mathbb{R}$ gibt mit $a \le k \ \forall \ a \in M$. Ein solches k heißt obere Schranke.
- (ii) Entsprechend heißt $\emptyset = M \subset \mathbb{R}$ nach unten beschränkt, falls $\exists k \in \mathbb{R} \quad k \le a$ $\forall a \in M$ (k heißt untere Schranke)
- (iii) $M \subset \mathbb{R}$, $M = \emptyset$ heißt beschränkt, falls M nach oben und unten beschränkt ist. $\emptyset \neq M \subset \mathbb{R}$ beschränkt falls $\exists k \in \mathbb{R}$ mit $-k \ge a \ge k \ \forall a \in M$

3.2.3.2. **Definition 2**

Eine Zahl $k \in \mathbb{R}$ heißt kleinste obere Schranke (größte untere Schranke), falls:

- a) K ist eine obere Schranke (untere Schranke)
- b) Es gibt keine kleinere obere Schranke (größere untere Schranke)

(also $k' \in R$ ist eine obere Schranke => $k' \ge k$)

$$a \le k$$
 <=> $-a \ge -k$

Also $M^- = \{-a, a \in M\}$ hat die gleiche Eigenschaft wie M, wenn man \leq oder \geq durch \geq oder \leq ersetzt.

3.2.4. Das Vollständigkeitsaxion (-)

Jede nichtleere nach unten beschränkte Teilmenge von R besitzt eine größte untere Schranke, die Infinum heißt.

Natürliche Addition:

supM < ∞ falls M nach oben beschränkt ist

supM = ∞ falls M nach oben nicht beschränkt ist (oder unbeschränkt)

3.2.4.1. Satz

- (i) Ist supM < ∞ , so gilt es zu geben ε > 0 ein x \in M, so dass supM $^{-}\varepsilon$ < x
- (ii) Ist supM = ∞ , so gilt es zu geben k > 0 ein x \in M ist k < x²

3.2.3. Das Vollständigkeitsaxiom

Jede nach oben beschränkte Teilmenge von R besitzt ein Supremum (= kleinste obere Schranke)

k = supM falls k die obere Schranke ist, d.h. $k \ge x \forall x \in M$

falls k die kleinste obere Schranke ist, d.h. \forall y < k \exists x \in M

3.2.3.3. Satz

Ist M beschränkt (Schranke auch supM < ∞) mit x > y, so gilt es zu geben E > 0 ein x \in M mit supM - E < X

Ist M unbeschränkt (Schreibe supM = ∞) so gilt es zu geben k > 0 ein x \in M und k < X

Beweis:

i. Setze a = $supM \in \mathbb{R}$

Wäre die Behauptung falsch, so gäbe es ein $\mathcal{E} > 0$, so dass supM - $\mathcal{E} \ge X \ \forall \ x \in M$. Es würde also gelten $x \le a$ - $\mathcal{E} \ \forall \ x \in M$. Somit wäre a - \mathcal{E} eine obere Schranke von M. Dies ist ein Widerspruch zur Tatsache, dass a die kleinste obere Schranke ist.

ii. Ist M unbeschränkt, so gibt es keine obere Schranke, also ein beliebiges k > 0 ist keine obere Schranke, d.h. $\exists x \text{ mit } x > k$

Entsprechend inf $M > -\infty$ falls M nach unten beschränkt ist

Inf $M = -\infty$ falls M nach unten beschränkt ist

Es gilt dann weitgehend:

i. Ist infM > - ∞ , so gilt es zu geben ε > 0 ein x \in M mit infM + ε > X

ii. Ist infM = $-\infty$, so gilt es zu geben, k > 0 ein x \in M mit x < K

3.2.3.4. Definition

Ein Element in einer Teilmenge E \subseteq R heißt größtes Element oder Maximum von M falls $x \subset n \ \forall \ x \in M$

Entsprechend ist ein $x \in M$ das Maximum von M falls $x > n \ \forall \ x \in M$

Beachte, da sup $M \in \mathbb{R}$ kein Element von M, seien Maximum m von M ist dagegen ein Element von M.

3.2.3.5. Beispiel

i.
$$M = [0, 1] = \{x \in \mathbb{R}: 0 < x \le 1\}$$

$$infM = 0$$
 $max M = 1$

ii.
$$M = (0, \infty)$$

$$infM = 0$$

$$infM = \infty$$

Es gibt kein Minimum und kein Maximum

3.2.3.6. Definition (Absolutbetrag)

Für eine reelle Zahl x ist der Absolutbetrag definiert durch:

$$|x| = \begin{cases} x & \text{falls } x \ge 0 \text{ schreibe auch: } |x| = \max(x_1 - x) \\ -x & \text{falls } x < 0 \end{cases}$$

3.2.3.7. Satz

Der Absolutbetrag hat folgende Eigenschaften

i.
$$x \ge 0 \forall y \in \mathbb{R} \text{ und } |x| = 0 \iff x = 0$$

ii. Multiplikationität
$$|x \cdot y| = |x| \cdot |y|$$

iii. Dreiecksgleichung
$$|x + y| \le |x| + |y|$$

Beweis:

i. $|x| \ge 0$ folgt der Definition:

$$|x| = 0$$
 => $x = 0$ oder $-x = 0$ => $x = 0$
 $x = 0$ => $|x| = x = 0$

ii. Schreibe
$$x = +/- x_0$$
, $y = +/- y_0$ mit $x_0y_0 > 0$

Dann ist $|X_Y| = |(+/- x_0)(+/- y_0)| = |+/- (x_0y_0)| = |x_0y_0| = x_0y_0 = |x_0| \cdot |y_0| = |x| \cdot |y|$

iii.
$$\forall x \in R$$
 $x \le |x|$ entsprechend $y \le |y| \Rightarrow x + y \le |x| + |y|$

Entsprechend:

$$-x \in |x| \text{ und } -y \in |y| => -(x + y) \le |x| + |y|$$

Zusammen erhält man:

$$|x + y| \le |x| + |y|$$

Wir haben $\mathbb{N} = \{1, 2, 3, ...\}$

1, 0,.. ∈ ℝ

1 neutrales Element der Multiplikation

0 neutrales Element der Addition

Injiziere $1 \in \mathbb{N}$ mit $1 \in \mathbb{R}$

Injiziere $n \in \mathbb{N}$ mit $1 + ... + 1 \in \mathbb{R}$

Fasse auf diese Weise N als Teilmenge von R auf:

$$\mathbb{N}_0 = \{0, 1, 2, 3, ...\} \subset \mathbb{R}$$

$$\mathbb{Z} = \{0, +/\text{--} 1, +/\text{--} 2, \dots\} \subset \mathbb{R}$$

3.2.3.8. Satz von Archimedes

Zu jedem $a \in \mathbb{R}$ gibt es ein $n \in N$ mit a < n

Beweis:

Ansonsten gäbe es ein $a \in R$ mit $a \ge n \ \forall \ n \in N$.

Also wäre $N \subset \mathbb{R}$ nach oben beschränkt.

Nach Axiom (III) besäße N ein Supremum b, b = supN ∈ R < ∞

Die b kleinste obere Schranke, d.h. \exists n \in N mit n > b - 1

Also gäbe es doch eine natürliche Zahl n + 1, die größer als b ist. Ein Widerspruch zur Annahme, dass b eine obere Schranke von N ist.

Man sagt auch, dass \mathbb{R} ein archimedisch geordneter Körper ist.

Folgerung:

Zu jedem $x \in \mathbb{R}$ gibt es eine eindeutig bestimmt ganze Zahl

 $n \in Z \text{ mit } n \le x \le n + 1$

Bezeichnung:

[x] Gauß-Klammer

3.2.3.9. Satz (Bernoulli'sche Ungleichung)

Für $n \in \mathbb{N}$ und a > -1 gilt

$$(1+a)^n \ge 1+n \cdot a$$

Beweis:

Mit vollständige Induktion

<u>Voraussetzung:</u> $(1 + a)^n = 1 + a$

 $1 + n \cdot a = 1 + a$

Induktionsschritt: Nehme an, die Aussage sei für n mächtig, also

 $(1+a)^n \ge 1+n \cdot a$

 $(1+a)^{n+1} = (1+a)^n (1+a) \ge (1+na)(1+a) = 1+na+a+na^2 \ge 1+(n+1)a$

Nun die rationale Zahlen:

$$\mathbb{Q} = \{ \frac{p}{f} \text{ mit p, f} \in \mathsf{Z}, \mathsf{f} \neq \mathsf{0} \} \subseteq \mathsf{R}$$

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$

 \mathbb{Q} ist ein Körper ((\mathbb{Q} , +) ist eine abelsche Gruppe ($\mathbb{Q} \setminus \{0\},...$)

Hier gilt das Distributivgesetz:

 $\mathbb Q$ ist auch arithmetisch geordnet, aber Q erfüllt das Vollständigkeitsaxiom nicht.

3.2.3.10. Satz (Existenz der Quadratwurzel)

Für jedes $c \in \mathbb{R}$ mit $c \ge 0$ gibt es genau ein $x \in \mathbb{R}$, $x \ge \mathbb{R}$ mit $x^2 = c$

Beweis:

i. Eindeutigkeit

Seien $x_1 \ge 0$, $x_2 \ge 0$ zwei Quadratwurzeln, also $x_1^2 = c - x_2^2$

$$=> 0 = x_1^2 - x_2^2 = (x_1 - x_2)(x_1 + x_2)$$

$$=> (x_1 - x_2) = 0$$
 oder $(x_1 + x_2) = 0$

Falls
$$x_1 - x_2 = 0$$

Falls
$$x_1 - x_2 = 0$$
 => $x_1 = 0 = x_2$

Falls
$$x_1 - x_2 = 0$$
 => $x_1 = x_2$

$$x_1 = x_2$$

ii. Existenz

Wir betrachten die Menge M = $\{z \in \mathbb{R} : z \ge 0 \text{ und } z^2 \le c\}$

Wir wissen:

- -M ≠ \emptyset , weil $0 \in M$
- -M ist nach oben beschränkt

$$(1 + c) \ge 1 + 2c \ge 1 + c$$

$$\Rightarrow$$
 \forall $z \in M$ gilt $z^2 \leq (1 + c)^2$

Also 1 + c ist die obere Schranke von M

Nach dem Vollständigkeitsaxiom gibt es $x = \sup M < \infty$

Behauptung: $x^2 = c$

Wäre $x^2 < c => (x + E)^2 < c$ Beweis:

Für
$$\varepsilon = \min \left(1, \frac{c - x^2}{2x + 1}\right)$$
 $\forall \varepsilon \in (0, 1)$

$$(x + E)^2 = x^2 + 2Ex + E^2 \le x^2 + 2Ex + E = x^2 + (2x + 1) \cdot E < C$$

Falls
$$\xi < \frac{c - x^2}{2x + 1}$$

3.2.3.11. Satz

 $c \ge 0$ $\exists ! x \ge 0 \text{ und } x^2 = c$

Beweis (Eindeutigkeit):

Existenz:

 $M = \{z \mid z \ge 0 \land z^2 \le c\} \subset \mathbb{R}; M \ne \emptyset$ und nach oben beschränkt.

 \implies x = supM < ∞

 z_a wegen $x^2 = c$

a) Nehme an, dass $x^2 < c$

$$\mathcal{E} = \min \{1, \frac{c - x^2}{2x + 1}\} > 0$$

$$\Rightarrow (x + \xi)^2 = x^2 + 2\xi x + \xi^2 \le x^2 + 2\xi x + \xi = x^2 + \xi \cdot (2x + \xi) \le x^2 + \frac{c - x^2}{2x + 1} \cdot (2x + \xi) = c$$

Also
$$(x + \mathcal{E})^2 \le c \Longrightarrow x + \mathcal{E} \in M$$

 \Rightarrow x ist eine obere Schranke

b) Nehme an, dass $x^2 > c$

Wähle
$$\mathcal{E} = \min \left\{ \frac{x^2 - c}{2x}, \frac{x}{2} \right\} > 0$$

$$\Rightarrow$$
 $(x - \varepsilon) = x^2 - 2\varepsilon x + \varepsilon^2 \ge x^2 - 2\varepsilon x \ge x^2 - 2x \cdot \frac{x^2 - c}{2x} = c$

also
$$(x - E)^2 > c$$

Da
$$z^2 \le c \ \forall \in M \Longrightarrow z^2 \le (x - \mathcal{E})^2 \ \forall \ z \in M$$

Da außerdem x -
$$\varepsilon \ge x - \frac{x}{2} = \frac{x}{2} \ge 0$$

$$\Rightarrow$$
 z \leq x - ϵ \forall z ϵ M

Also ist x - ε die obere Schranke, im Widerspruch zur Tatsache, dass x die kleinste obere Schranke ist.

Beschreibung $x = \sqrt{c}$, entsprechend $\sqrt[n]{c}$, $n \in \mathbb{N}$

3.2.3.12. Satz

 $\sqrt{z} \notin \mathbb{Q}$

Beweis:

Nehme umgekehrt an, dass $\sqrt{2} \in \mathbb{Q}$, also $\frac{p}{q}$ pq $\in \mathbb{Z}$, q $\neq 0$

Wir können annehmen, dass p und q teilsfremd sind. Dann sind p^2 und q^2 auch teilsfremd.

 $(\sqrt{2})^2 = \frac{p^2}{a^2} \neq 2$, denn ansonsten würde q = 1 sein und $\sqrt{2}$ wäre eine rationale Zahl.

3.3. Komplexe Zahl

Problem:

Von negativen Zahlen gibt es keine Wurzel in $\mathbb R$

3.3.1. Definition

Die Menge R x R = $\{(x, y) \mid x, y \in \mathbb{R}\}$ aller geordneter Paare mit der Addition und Multiplikation.

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 - y_2)$$

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1y_2, x_2y_1)$$

Und die Menge der komplexen Zahlen gennat und mit C bezeichnet wird.

3.3.2. Satz

C ist ein Körper

Beweis:

(Also z wegen (\mathbb{C} , +) und ($\mathbb{C} \setminus \{0\}$, ...) und abelsche Gruppen und das Distributivgesetz gelten)

$$0 = (0 / 0) \lor (x, y) \neq 0 = (x, y) + (0, 0) = (x + 0, y + 0) = (x, y)$$

$$1 = (1/0) \lor (x, y) \cdot 1 = (x, y) \cdot (1/0) = (x \cdot 1 - y \cdot 0, x \cdot 0 - y \cdot 1) = (x, y)$$

Außerdem:

$$-(x, y) = (-x, -y)$$

$$(x, y)^{-1} = (\frac{x}{x^2 + v^2}, \frac{y}{x^2 + v^2})$$
 ist wohldefiniert falls $(x, y) \neq 0$

$$(x,y)\cdot(x,y)-1=(x,y)\cdot(\frac{x}{x^2+y^2},\frac{-y}{x^2+y^2})=(\frac{x^2}{x^2+y^2}-\frac{-y^2}{x^2+y^2},x\cdot\frac{-y}{x^2+y^2}+y\cdot\frac{x}{x^2+y^2})=(1/0)$$

Man kann nun alle Regeln berechnen z.B. dass Assoziationsgesetz der Multiplikation.

$$((x_1, y_1) \cdot (x_2, y_2)) \cdot (x_3, y_3) =$$

$$= (x_1x_2 - y_1y_2, x_1y_1 - x_2y_2) \cdot (x_3, y_3) =$$

$$= ((x_1y_2 - y_1y_2) \cdot x_3 - (x_1y_2 + x_2y_1) \cdot y_3, (x_1x_2 - y_1y_2) \cdot y_3 + (x_1y_2 + x_2y_1) \cdot x_3 =$$

$$= (x_1, y_1) \cdot ((x_2y_2) \cdot (x_3y_3)) =$$

$$= (x_1, y_1) \cdot (x_2x_3 - y_2y_3, x_2y_3 - y_2x_3) =$$

$$= x_1 \cdot (x_2x_3 - y_2y_3) - y_1 \cdot (x_2y_3 - y_2y_3), x_1 \cdot (x_2y_3 - y_2y_3) - y_1 \cdot (x_2x_3 - y_2y_3)$$

Das Distributivgesetz beweist man abelsch

 $x \in \mathbb{R}$

 $(x,0) \in \mathbb{C}$ erfüllen die abelsche Rechenregeln für reelle Zahlen. Führe $\mathbb{R} \subset \mathbb{C}$ auf, indem man $x \in \mathbb{R}$ mit $(x,0) \in \mathbb{Q}$ identifizieren

3.3.3. Definition

Die Zahl (0, 1) wird imaginäre Einheit i genannt.

Schreibweise:

$$(x, y) = x + iy$$

Re (x, y) = x

Realteil

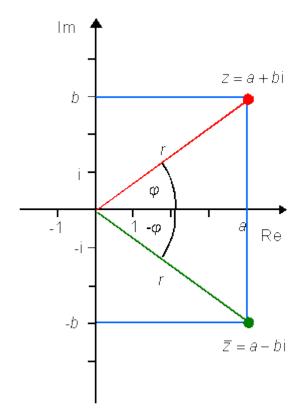
 $Im \qquad (x,y) = y$

Imaginärteil

 $(x_1y) = (x_1 - y)$

Komplexe

z = (x, y) schreibe also z = x + iy = Re z + i Im Z



Rechnen mit komplexen Zahlen:

$$i^2 = (0, 1) \cdot (0, 1) = (0 \cdot 0 - 1 \cdot 1), (0 \cdot 1 + 1 \cdot 0) = -(1, 0) = -1$$

$$z_1z_2 = (x_1y_1) \cdot (x_2y_2) =$$

$$= (x_1 + iy_1) \cdot (x_2 + iy_2) =$$

$$= x_1x_2 + iy_1x_2 + x_1iy_2 + iy_1iy_2 =$$

$$= x_1x_2 + i \cdot (y_1x_2 + x_1y_2) - y_1y_2 =$$

$$= (x_1x_2 - y_1y_2) + i \cdot (y_1x_2 + x_1y_2)$$

$$\underline{\mathbf{z}}_{1}\underline{\mathbf{z}}_{2} = \underline{\mathbf{z}}_{1} \cdot \underline{\mathbf{z}}_{2}$$

(Anmerkung vom Autor: Der Strich ist normallerweise über den Buchstaben)

$$z = x + iy$$

$$z^2 = x^2 - y^2 + 2ixy$$

$$z\underline{z} = (x + iy) \cdot (x - iy) = x^2 - (iy)^2 = x^2 + y^2$$

3.3.4. Definition

Der Betrag einer komplexen Zahl ist definiert durch $|z| = (\underline{z}\underline{z})$

$$(x+iy)^{-1} = \frac{1}{x+iy} = \frac{(x-iy)}{(x+iy)\cdot(x-iy)} = \frac{x-iy}{x^2-(iy)^2} = \frac{x-iy}{x^2+y^2} = \left(\frac{x}{x^2+y^2}, \frac{-iy}{x^2+y^2}\right)$$

3.3.5.Satz

- i. $|z| \ge 0$ mit |z| = 0 <=> z = 0
- ii. Dreiecksungeleichung $|z_1 + z_2| \le |z_1| + |z_2|$
- iii. Multiplikationität $|z_1 z_2| = |z_1| \cdot |z_2|$

3.3.6.Benennung

Zu i. und ii. sagt man auch dass | | eine Norm ist.

Beweis und Satz 3.3.5.

i.
$$|z| = \sqrt{x^2 + y^2} = 0$$
 <=> $x^2 + y^2 = 0$

$$<=> x = 0 = y$$
 also $z = 0$

ii. Für jeden
$$z \in \mathbb{C}$$
 $z = x + iy$

Re
$$z = x$$
 $|z| = \sqrt{x^2 + y^2}$

Da
$$x^2 \le x^2 + y^2$$
 \Rightarrow $|x| \le \sqrt{x^2 + y^2}$
 \Rightarrow $x \le \sqrt{x^2 + y^2}$

Also Re $z \le |z| \ \forall \ z \in \mathbb{C}$

Re
$$(z_1, z_2) \le |z_1, \underline{z_2}| = |z_1| \cdot |z_2|$$
 nach iii.

$$\Rightarrow |z_1 + z_2|^2 = (z_1 + z_2)(z_1 + z_2) =$$

$$= z_1 \underline{z_1} + z_1 \underline{z_2} + z_2 \underline{z_1} + z_2 \underline{z_2} = |z_1|^2 + (z_1 \underline{z_2} + \underline{z_1} \underline{z_2}) + |z_2|^2 =$$

(Einschub:
$$z + \underline{z} = (x+iy) + (x - iy) = 2x = 2 \text{ Re } z$$
)

$$= |z_1|^2 + 2 |z_1| |z_2| + |z_2|^2 = (|z_1| + |z_2|)^2$$

Also
$$|z_1 + z_2|^2 \le (|z_1| + |z_2|)^2$$

$$\Longrightarrow z_1 + z_2 \le |z_1| + |z_2|$$

iii.
$$|z_1 z_2|^2 = (|z_1| + |z_2|)^2 = (z_1 z_2) \cdot (\underline{z_1} \underline{z_2}) = z_1 z_2 \underline{z_1} \underline{z_2} = (z_1 \underline{z_1}) \cdot (z_2 \underline{z_2}) = |z_1|^2 \cdot |z_2|^2$$

$$\Rightarrow |z_1 z_2| = |z_1| \cdot |z_2|$$

$$|\underline{z}|^2 = \underline{zz} = z\underline{z} + \underline{z}z = |z|^2$$

$$\Rightarrow |\underline{z}| = |z|$$

$$|z_1, \underline{z_2}| = |z_1| \cdot |\underline{z_2}| = |z_1| \cdot |z_2|$$

$$x^2 = c \text{ und } c \le 0$$

Die Gleichung besitzt die Lösungen x = zi \sqrt{c} denn x² (+/- $x\sqrt{|c|^2}$ = - |c| = c

Sondern nicht \sqrt{c} ist nicht definiert, weil nicht klar ist, ob dass = $+/-i\sqrt{|c|}$ sein soll.

Gaußsches Nullstellengesetz:

...
$$a_1 z^1 + a_{n+1} z^{n+1} + a_n$$

Ist $a_n \in \mathbb{C}$, $z \in \mathbb{C}$ von Grad $n \ge 1$ nicht wenigstens eine Nullstelle z_0 .

4. Folgen und Reihen

4.1. Definition

Sei M eine nichtleere Menge. Unter einer Folge in M versteht man eine Abbildung $\mathbb{N} \to M$ die jedem $n \in \mathbb{N}$ ein Element $a_n \in M$ zuordnet.

Die Folge wird auch bezeichnet mit a_n mit $n \in \mathbb{N}$ oder a_1 , a_2 , a_3 ,...

Man nennt an das n-te Element der Folge

 $M = \mathbb{R}$ (reelle Folge)

oder $M = \mathbb{C}$ (komplexe Folge)

4.2. Beispiel

- i. Ist $a_n = a \forall n \in \mathbb{N}$, $a \in M$, so erhalten wir die konstante Folge
- ii. Für $a_n = (-1)^n$ erhalten wir die Folge -1, 1, -1, 1,...
- iii. Die Vorschaft $a_n = \frac{1}{n}$ heißt die Folge 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$,...
- iv. Für $a_n = z^n$, $n \in \mathbb{N}$, $z \in \mathbb{C}$ erhält man die Folge z, z^2 , z^3 ,... (Folge der Potenzen)

4.3. Konvergente Folgen

4.3.1. Definition

Für x, $y \in \mathbb{C}$ (oder \mathbb{R}) setzen wir d(x, y) = |x - y| ("distance") und bezeichnend als Abstand von x und y

4.3.2. Satz

Der Abstand hat folgende Eigenschaft

i. Pritorität: $d(x, y) \ge 0$ und d(x, y) = 0 \iff x = y

ii. Symmetrie: d(x, y) = d(x, y)

iii. Dreiecksungleichung: d(x, y) < d(x, y) + d(z, y)

Die Eigenschaft kann man auch verallgemeinernd als Definition einer sog. Metrik verwenden.

4.3.3. Definition

Die Menge $B_{\epsilon}(x) = \{ y / d(x, y) < \epsilon \}$ und ϵ wird Umgebung genannt.

4.3.4. Definition von Grenzwert

i. Sei a_n mit $n \in \mathbb{N}$ eine reelle und komplexe Folge. Die Folge heißt konvergent gegen a, falls gilt:

Zu jedem $\varepsilon > 0$ existiert ein $N \in \mathbb{N}$, so dass $d(a_n a) < \varepsilon \forall n \ge \mathbb{N}$

Man nennt a den Grenzwert der Folge und schreibt:

 $a_n \! \longrightarrow \! a \qquad \qquad \text{für} \qquad n \longrightarrow \infty$

- ii. Eine Folge, die gegen 0 konvergiert, heißt Nullfolge
- iii. Eine Folge ist konvergent, falls sie einen Grenzwert besitzt
- iv. Eine Folge die nicht konvergent ist, heißt anders ausgedrückt:

In jeder ε - Umgebung liegen fast alle Folgenglieder a_n ("fast alle" = alle bis auf endlich viele)

Eindeutigkeit des Grenzwertes:

Wähle \mathcal{E} so klein, dass $B_{\mathcal{E}}(a) \cap B_{\mathcal{E}}(a') = \emptyset$

Dann müssten in $B_{\epsilon}(a)$ und $B_{\epsilon}(a')$ jeweils alle Folgeglieder liegen, was nicht sein kann.

Jetzt nach indirekten Beweis:

4.3.5. Satz

Der Grenzwert einer konvergenten Folge ist eindeutig.

Beweis:

Seien a und a' Grenzwerte von (a_n) . Dann gilt es zu geben $\mathcal{E} > 0$ in N, so dass \forall $n \ge N$ gilt

 $d(a, a_n) < \varepsilon$ und $d(a', a_n) < \varepsilon$. Es folgt nach der Dreiecksungleichung:

$$d(a, a') \le d(a, a_n) + d(a, a') < 2E$$

Da E beliebig klein gewählt werden kann, folgt d(a, a') = 0. Nach der

Dreitinitätseigenschaft i. des Abstandes folgt a = a: Also ist der Grenzwert eindeutig.

4.3.6. Beispiele

Wir untersuchen nun die Peisile auf Konvergenz:

- i. Die konstante Folge $a_n = a$ konvergiert $a_n \longrightarrow a$ (denn $\forall \ \epsilon > 0$ gilt d(a, a_n) = 0 $\forall \ n \ge 1$, wähle also N = 1)
- ii. Die Folge $a_n = (-1)^n$ ist konvergent. Nehme an, dass (a_n) gegen a konvergiert. Für $\mathcal{E} = 1$ gibt es dann ein N mit $d(a, a_n) \le 1 \ \forall \ n \ge N$

Nach der Dreiecksungleichung folgt $d(a, a_{n+1}) \le d(a_n, a) + d(a, a_{n+1}) < 2$

Das ist Widerspruch zu $d(a_n, a_{n+1}) = |a_n - a_{n+1}| = 2$

iii. Die Folge $a_n = \frac{1}{n}$ ist eine Nullfolge. Sei $\varepsilon > 0$. Nach dem Satz von Archimedes gibt es ein N mit N $> \frac{1}{a}$ $\frac{1}{a} \in \mathbb{R}$, > 0.

Dann gilt ∀ n ≥ N

$$d(a_n, 0) = \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \frac{1}{N} < \varepsilon$$

iv. Die Folge $a_n = z^n$ ist für |z| < 1 eine Nullfolge

Beweis:

Da
$$|z| < 1$$
 ist $\frac{1}{|z|} > 1$, also $h := \frac{1}{|z|} - 1 > 0$ $|z| = \frac{1}{1+n}$

Es folgt dann

$$d(a_n 0) = |z^n - 0| = |z^n| = |z|^n = (1 + h)^n$$

Die Bernoulli-Ungleichung heißt

$$(1+h)^n \ge 1 \cdot n \cdot h$$

Und folglich

$$d(a_n 0) \le \frac{1}{1+n \cdot h} < \frac{1}{n \cdot h} = \frac{1}{n} \cdot \frac{1}{h} \longrightarrow 0 \text{ für } n \longrightarrow \infty$$

Also
$$\forall \ \xi > 0 \exists \ N \ mit \frac{1}{n} < \xi \ \forall \ n \ge \mathbb{N}$$

 \Rightarrow Zu gegebenen $\varepsilon > 0$ wähle $\varepsilon = \varepsilon' \cdot h$ und ungleich N

$$\implies$$
 d(a_n 0) \leq E'

Die Folge $a_n = z^n$ divergiert falls |z| > 1

Beweis:

Nehme an, dass $a_n \rightarrow a$. Dann gilt es zu geben $\varepsilon > 0$ ein N so dass $d(a, a_n) < \varepsilon$

 \forall n \geq N.

Nach der Dreiecksungleichung folgt

$$d(a_m, a_{n+1}) \le d(a_m, a) + (d, a_{m+1}) < 2\epsilon$$
 (*)

Anderseits ist

$$d(a_m, a_{n+1}) = |z^n - z^{n+1}| = |(1-z) \cdot z^n| = |1-z| \cdot |z|^n$$

Nun ist $|z|^n > 1$ und wegen der Dreiecksungleichung ist

$$|z| = |z - 1 + 1| \le |z - 1 + |1|$$

$$\Rightarrow |z-1| \ge |z| - 1$$

$$\Rightarrow$$
 d(a_m, a_{n+1}) \geq |z| - 1 > 0

Das ist ein Widerspruch zu (*), wenn wir ε genügend klein wählen. Der Fall |z| = 1 hängt von der genaueren Wahl von z ab.

4.3.7. Satz / Bemerkung

Es gilt
$$|d(x, y) - d(z, y)| \le d(x, y)$$

Beweis:

Nach der Dreiecksungleichung gilt

$$d(x, z) \le d(x, y) + d(y, z)$$

$$d(z, y) \le d(z, x) + d(x, y)$$

$$d(x, z) - d(z y) \le d(x, y)$$

$$d(z, y) - d(z, x) \le d(x, y)$$

$$<=> |d(x, z) - d(z, y)| \le d(x, y)$$

4.4. Beschränkt und Monotone Folgen

4.4.1. Definition

Eine Folge (a_n) heißt beschränkt falls es eine reelle konstante C gibt und ein $a \in M \subset \mathbb{R}$ gibt, so dass

$$d(a_n, a) \le C \quad \forall n \in \mathbb{N}$$

Wir können a beliebig klein wählen, die nach der Dreiecksungleichung gilt

$$d(a_n, a') \le d(a_n, a) + d(a, a') \le C + d(a, a') = C'$$

Also liegen alle Folgeglieder auch in $\{x : d(x, a') \le C'\}$

Bei reellen oder komplexen Folgen ist es bequem a = 0 zu wählen. Eine Folge (a_n) ist also genau dann beschränkt falls $\exists C > 0$, so dass $(a_n) \le C \ \forall n \in \mathbb{N}$

4.4.2. Satz

Jede konvergente Folge ist beschränkt

Beweis:

Sei (a_n) eine konvergent Folge mit $a_n \rightarrow a$. Dann gibt es (wähle E = 1) ein N, so dass $d(a_n, a) < 1 \ \forall \ n \ge N$ (*)

Wähle man $C = \max(1, d(a_n, a), d(a_{n-1}, a) \in \mathbb{R}$. Es folgt $d(a_n, a) \le C$ für n = 1, N = 1. Nach Definition von C:

 \leq C für alle n \geq N, wegen (*) und der Tatsache dass C \geq 1 ist.

Die Umsetzung dieses Falsches ist falsch, entsprechend $a_n = (-a)^n$ ist beschränkt, also konvergent.

4.4.3. Definition

Eine reelle Folge (a_n) heißt monoton wachsend (bzw. streng monoton wachsend) falls:

$$a_n = a_{n+1}$$
 (bzw. $a_n < a_{n+1}$) $\forall n \in \mathbb{N}$

Umgekehrt heißt sie monoton fallend (bzw. streng monoton fallend) falls

$$a_n \ge a_{n+1}$$
 (bzw. $a_n > a_{n+1}$) $\forall n \in \mathbb{N}$

Bedeute in folgend in monoton wachsende Folgen, dann ist (a_n) monoton fallend, so ist $(-a_n)$ eine monoton wachsende Folge.

Für monotone Folgen gilt folgende Konvergenz:

4.4.4. Satz (Monotone Konvergenz)

Nach Satz 4.4.2. wird gezeigt, dass jede nach oben beschränkte, monoton wachsende Folge konvergent ist.

Sei (a_n) nach oben beschränkt. Beachte:

$$A_n = \{ a_n \text{ mit } n \in \mathbb{N} \} \subset \mathbb{R}$$

Die Menge A_n ist nach oben beschränkt und besitzt dafür ein Supremum

Es gibt zu jedem $\varepsilon > 0$ ein $x \in A$ mit $a \le x - \varepsilon$

$$0 \le a - x \le \varepsilon$$

Es gilt N mit $a_n = X$

Da (a_n) monoton steigend ist, folgt

$$a_n \ge a_N \ \forall \ n \ge N$$

$$a - \mathcal{E} \le a_N \le a_n \le a$$
, also $|a_n - a| < \mathcal{E} \ \forall \ n \ge N$

Definition:

 $a_n \longrightarrow a$, falls $\forall \ \epsilon > 0 \ \exists \ N \ mit \ d(a_n, a) < \epsilon \ \forall \qquad n \ge N$

Definition:

 $a_n \in \mathbb{R}$, falls $a_n \le a_{n+1} \forall n$

Satz (monotone Konvergenz):

Sei (a_n) mw, dann gilt (a_n) konvergiert \iff (a_n) nach oben beschränkt

Beweis:

- =>) Klar, da jede kovergente Folge beschränkt ist
- $<=) \qquad A:=\{a_n\colon n\in\mathbb{N}\}\subset\mathbb{R} \text{ ist nach oben beschränkt und}\neq\emptyset.$

a := supA < ∞ . Nun gilt \forall ϵ > 0 \exists N mit $(a_n) \geq a - \epsilon$ (#)

Für jedes n ≥ N gilt dann:

$$a - \mathcal{E} \le (a_N) \le (a_n) \le a$$

$$(a_n)(mw) \qquad da \ a = supA$$

$$\Rightarrow a - \mathcal{E} \le (a_n) \le 0$$

$$\Rightarrow |a - (a_n)| \le \mathcal{E} \qquad \forall \ a \ge N$$

4.5. Teilfogen, Häufungspunkte

4.5.1. Definition

Sei (a_n) mit $n \in \mathbb{N}$ Folge und $n_1 < n_2 < ...$ eine aufsteigende Folge natürlicher Zahlnen. Dann heißt die Folge:

 $(a_{n\#k})$ mit $k \in \mathbb{N} = (a_{n\#1}; a_{n\#2}; ...)$ eine Teilfolge der Folge (a_n) :

- Jede Teilfolge einer konvergenten Folge konvergiert
- Die Umkehrung gilt nicht

4.5.2. Definition

Eine Folge (a_n) mit $n \in \mathbb{N}$ besitzt den Häufungspunkt a, falls es zu jedem $\mathcal{E} > 0$ unendliche Folgeglieder in $B_{\mathcal{E}}(a)$ gilt $\forall \mathcal{E} > 0$: $(a_n) < \mathcal{E}$ für unendlich viel $n \in \mathbb{N}$.

Beispiel: Folge $(a_n) = (-1)^n = (-1, 1, -1, ...)$ ist divergent oder +1, -1 sind Häufungspunkte.

4.5.3. Satz

a ist ein Häufungspunkt von (a_n) genau dann, wenn a_K eine Teilfolge $(a_{n\#k})$ existiert, die gegen a konvergiert.

Beweis:

- <=) Sei $(a_{n\#k})$ eine Teilfolge mit $(a_{n\#k}) \longrightarrow a \ \forall \ \epsilon > 0$ liegen, dass fast alle Folgenglieder $(a_{n\#k})$ in $B_{\epsilon}(a)$. Also sind unendlich viele Folgenglieder $(a_{n\#k})$ in $B_{\epsilon}(a)$
 - \Longrightarrow unendlich viele (a_n) sind in $B_{\epsilon}(a)$. Also ist a ein Häufungspunkt von (a_n).
- =>) Sei a Häufungspunkt von (a_n). Gebe induktiv vor:

In $B_1(a)$ liegen unendlich viele (a_n) . Wähle eines aus, $(a_{n#1})$

In $B_{1/2}(a)$ liegen unendlich viele (a_n) . Wähle eines aus, $(a_{n\#2})$, $n_2 > n_1$

In $B_{1/n}(a)$ liegen unendlich viele (a_n) . Wähle eines aus, $(a_{n\#k})$, $n_k > n_{k-1}$

Damit ist n_k aufsteigend und $(a_{n\#k}) \in B_{1/k}(a)$

Behauptung:

$$(a_{n\#k}) \longrightarrow a$$

Beweis:

Sei $\varepsilon > 0$, wähleN mit $\frac{1}{N} < \varepsilon$ \forall k > N gilt dann

$$\Rightarrow$$
 $(a_{n\#k}) \in \frac{B(a)}{k} \subset B_1(a) \subset B_{\varepsilon}(a)$

4.5.4. Theorem (Bolzano – Wiesenstraß)

Jede beschränkte reelle Folge besitzt einen Häufungspunkt.

Beweis:

Sei (a_n) mit $n \in \mathbb{N}$ eine beschränkte Folge, also $|a_n| < C$ $\forall n \in \mathbb{N}$

Setzt $\{(a_n) : n \in \mathbb{N}\} \subset \mathbb{R}$, beschränkt $\neq \emptyset > -\infty$

Für jedes $\mathcal{E} > 0$ liegt wenigstens ein Folgenglied im Intervall [a, a + \mathcal{E}) gäbe, dann wäre a ein Häufungspunkt, und wir sind fertig. Damit können wir annehmen, dass es ein $\mathcal{E} > 0$ gibt, so dass in [a, a + \mathcal{E}) endlich viele Folgenglieder liegen. Wähle aus diesen endlich vielen Folgegliedern das kleinste aus, bezeichne es mit a_1 .

Betrachte nun die Folge (a_n) mit $n \in \mathbb{N}$ mit $(a_n) = a_{n\#1+1}$, dann ist $(a_n) \ge (a_{n\#1}) \ \forall \ n \in \mathbb{N}$.

Wiederhole obrige Konstruktion mit (a_n) ersetzt durch (a_2) . Das kleinste Glied dieser Folge bezeichnen wir mit $a_{n\#2}$ (Anmerkung vom Autor: $a_{n\#2}$ – Die "2" ist noch eins tiefer gestellt als "n")

Bilde neue Folge a^3n ; $a^3n = a_{n\#(2+n)}$

Fahre auf diese Weite iterativ fort. Die so erhaltene Folge $a_{n\#k}$ hat die folgenden Eigenschaften:

- i. $(a_{n\#k})$ ist (w)
- ii. (a_{n#k}) ist also Teilfolge einer beschränkten Folge

Nah Satz 4.4.4. ist $(a_{n\#k})$ konvergent. Also besitzt (a_n) eine konvergente Teilfolge und hat damit nach 4.5.3. einen Hochpunkt.

4.5.5. Theorem

Jede beschränkte komplexe Folge besitzt einen Häufungspunkt.

Beweis:

Sei (z_n) eine beschränkte komplexe Folge, also $|z_n| \leq \mathbb{C}$ $\forall n$

 $z_n = x_n + iy_n \text{ mit } (x_n), (y_n), \text{ reelle Folgen, sind auch beschränkt}$

$$|x_n|$$
, $|y_n| < \mathbb{C}$ \forall n (da $|\text{ReZ}| \le |z|$, $|\text{ImZ}| \le |z|$).

Nach Theorem 4.5.4. gibt es n_k mit $X_{n\#k} \longrightarrow x \in \mathbb{R}$. Betrachte nun die Folge $y_{n\#k}$. Nach

Theorem 4.5.4. gibt es $n_{k\#l}$ wachsend mit $y_{k\#l} \rightarrow y \in \mathbb{R}$, setzte $p_l = n_{k\#l}$.

Dann gilt $x_{p\#l} \rightarrow x$ und $y_{p\#l} \rightarrow y$. Es folgt dann $z_{p\#l}$ gegen (x + iy) konvergiert, da

$$(z_{p\#l} - (x + iy)) = |(x_{p\#l} - x) + i(y_{p\#l} - y)| \le |x_{p\#l} - x| + |y_{p\#l} - y| < \varepsilon$$

$$\forall \; \epsilon > 0 \; \text{gibt es L mit } |x_{\text{p\#l}} - x| < \frac{\epsilon}{2} \text{, } |y_{\text{p\#l}} - y| < \frac{\epsilon}{2} \qquad \quad \forall \; l \geq L$$

4.6. Cauchy - Folge

4.6.1. Definition

Eine Folge (a_n) mit $n \in \mathbb{N}$ heißt Cauchy – Folge, falls es in jedem E ein N gibt, so dass $d(a_n, a_m) < E \ \forall \ n, m \ge \mathbb{N}$

Beachte:

Es genügt dabei jetzt nicht, dass benachbarte Folgenglieder klein werden.

<u>z.B.:</u> $(a_n) = \sqrt{n}$ ist divergente Folge, ist keine Cauchy − Folge, da $d(a_n, a_m) = |\sqrt{n} - \sqrt{m}|$ divergiert falls $n \to \infty$ und $m = \text{konstant aber } d(a_{n+1}, a_n) = |\sqrt{n+1} - \sqrt{n}| \to 0$

4.6.2. Satz

Eine reelle Folge ist genau dann konvergent, wenn sie eine Cauchy-Folge ist

Beweis:

- =>) Sei (a_n) eine reelle Folge mit $(a_n) \longrightarrow a$. Dann gibt es zu jedem E > 0 ein N mit $d(a,a_n) < \frac{\epsilon}{2} \qquad \forall \ n \ge N$
 - $=> \forall m, n \ge N \text{ gilt dann d}(a_n, a_m) \le d(a_n, a) + d(a, a_m) < \varepsilon$
- <=) Sei (a_n) eine Cauchy-Folge, dann \exists N mit $d(a_n, a_N) < 1$ \forall $n \ge N$

(Wähle in Definition: $\varepsilon = 1$ und m = N)

⇒
$$d(a_n, a_N) < C$$
 $\forall n \in \mathbb{N} \text{ mit } C = \max(1, d(a_1, a_N), d(a_2, (a_N)... d(a_{N-1}, a_N))$

Also ist die Folge beschränkt. Nach dem Satz von Balzano – Wiesenstraß besitzt (a_n) einen Häufungspunkt a. Nach 4.5.3. gibt es eine konvergente Teilfolge $(a_{n\#k}) \rightarrow a$.

Zu gegebenen $\varepsilon > 0$ wählen wir N so, dass $d(a_n, a_m) < \frac{\varepsilon}{2}$ \forall m, n > 0.

Nach Definition der Cauchy-Folge d($a_{n\#k}$, a) $<\frac{\epsilon}{2}$ \forall (n_k) > N. Nach der Definition

Der Konvergenz der Teilfolge $(a_{n\#k})\Longrightarrow d(a_n$, $a)\le d(a_n$, $a_{n\#k})+(a_{n\#k}$, $a)<\epsilon$

$$\Rightarrow a_n \rightarrow a$$

4.7. Konvergenzsätze

4.7.1. Theorem

Seien (a_n) , (b_n) reelle oder komplexe Folge $(a_n) \longrightarrow a$ und $(b_n) \longrightarrow b$

Dann gilt:

- i. $\lambda(a_n) \rightarrow \lambda \cdot a \text{ (für } \lambda \in \mathbb{R} \text{ oder } \mathbb{C})$
- ii. $a_n + b_n \rightarrow a + b$
- iii. $a_n \cdot b_n \longrightarrow a \cdot b$

Ist außerdem b ≠ 0 so gilt auch:

iv.
$$\frac{\operatorname{an}}{bn} \longrightarrow \frac{a}{b}$$

4.7.1. These

Seien (a_n) und (b_n) Folgen in $\mathbb R$ oder $\mathbb C$ mit $(a_n) \to 0$ und $(b_n) \to b$. Sei $\lambda \in \mathbb R$ oder $\mathbb C$. Dann gilt:

i.
$$\lambda a_n \rightarrow \lambda$$

ii.
$$a_n + b_n = a + b$$

iii.
$$a_n \cdot b_n = a \cdot b$$

Ist außerdem b ≠ 0 dann:

iv.
$$\frac{an}{bn} \rightarrow \frac{a}{b}$$

Beweis:

Beweis nur iii. (Rest siehe Übungen): Als konvergente Folgen sind (a_n) und (b_n) beschränkt, d.h. $\exists C > 0 \le d$

$$|a_n|, |b_n| < C \forall n \in \mathbb{N}$$

Es folgt

$$|a_nb_n - ab| =$$

= $|a_nb_n - ab_n + ab_n - ab| \le |a_n - a| \cdot |b_n| + |a| \cdot |b_n - b| < C(|a_n - a| + |b_n - b|) \longrightarrow 0$

4.8. Reihen

4.8.1. Definition

Eine endliche Summe $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + ...$ und $a_n \in \mathbb{R}$ (oder \mathbb{C}) wird Reihe genannt. Der Konvergenzbegriff für Reihen auf Folgen zurückgeführt werden, indem man die Folge der Partialsummen

$$S_n = \sum_{i=1}^n a_i = a_1 + ... + a_n$$

Betrachtet.

4.8.2. Definition

Die Reihe $\sum_{i=1}^{\infty} a_i$ heißt konvergent, falls die Folge der Partialsumme $(s_n)_{n \in \mathbb{N}}$ konvergiert. Man schreibt $\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} s_n$. Die Reihe heißt konvergent, falls (s_n) divergiert.

4.8.3. Beispiel für eine geometrische Reihe

Wir betrachten für |z| < 1 die geordnete Reihe $\sum_{n=0}^{\infty} z^n$. Wir berechnen zunächst die Partialsumme

$$s_n = \sum_{i=0}^n z^i = 1 + z + z^2 + z^3 + ... + z^n$$

Betrachten wir nun

$$s_n((1-z) = (1+z+...+z^n) \cdot (1-z) = 1-z^{n-1}$$

$$\implies S_{n} = \frac{1 - z^{n}(n+1)}{1 - z} = \frac{1}{1 - z} - \frac{1}{1 - z} \cdot z^{n+1}$$

Die Folge zⁿ⁺¹ ist eine Nullfolge.

Beweis:

Siehe Übungen

Die Konvergenzsätze 4.7.1. liefern $\lim_{n\to\infty} s_n = \frac{1}{1-z}$

Folglich ist die geometrische Reihe konvergent und $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$

Viele Ergebnisse für Folgen lassen sich unmittelbar auf Reichen übertragen.

4.8.4. Satz (Linearkombination konvergente Reihen)

Seien $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ zwei konvergente Reihen und λ , $\mu \in \mathbb{R}$ (oder \mathbb{C}). Dann konvergiert auch die Reihe $\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) = \lambda \sum_{n=1}^{\infty} a_n + \mu \sum_{n=1}^{\infty} b_n$

Beweis:

Wende die Konvergenzsätze 4.7.1. auf die Folgen der Partialsumme an.

4.8.5. Satz (Cauchy - Kriterium)

Die reelle Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert genau dann, wenn es zu jedem $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt, so dass $|\sum_{k=m}^n a_k| < \epsilon \ \forall \ n \ge m \ge N$ (#)

Beweis:

Bezeichne die Partialsummen mit $s_n = \sum_{k=1}^n a_k$. Nach dem Satz über Cauchyfolgen ist die Folge (s_n) genau dann konvergent, wenn (s_n) eine Cauchyfolge ist, d.h. $\forall \ \epsilon > 0 \ \exists \ N \in \mathbb{N}$, so dass $|s_n - s_m| < \epsilon \ \forall \ n \ge m \ge \mathbb{N}$.

Wegen $s_n - s_m = \sum_{k=m}^n a_k$ ist diese Bedingung äquivalent zu (#).

4.8.6. Satz

Eine notwendige (aber nicht kennzeichnende Bedingung für die Konvergenz der Reihe $\sum_{n=1}^{\infty} a_n$ ist, dass (a_n) eine Nullfolge ist.

Beweis:

Sei $\sum_{n=1}^{\infty} a_n$ konvergent. Nach dem Cauchykriterium ist zu jeden $\varepsilon > 0$ ein $N \in \mathbb{N}$, so dass $(a_n) < \varepsilon \forall n \ge N$ (wähle man in (#)). Also ist (a_n) eine Nullfolge.

4.8.7. Beispiel

- i. Die Reihe $\sum_{n=1}^{\infty} (-1)^{^{n+1}}$ ist divergent, weil die zugehörige Folge $((-1)^{^{n-1}})_{n\in\mathbb{N}}$ keine Nullfolge ist
- ii. Die sog. Harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ erfüllt die notwendige Bedingung von 4.8.5. Trotzdem ist die Reihe divergent, denn

$$S_{2n} - S_n = \sum_{k=n}^m \frac{1}{k} = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} \ge n \cdot \frac{1}{2n} = \frac{1}{2}$$

⇒ Das Cauchy-Kriterium ist verletzt

4.9. Allunierende Reihen, das leihnische Konvergenzkriterium

4.9.1. Definition

Eine Reihe der Form

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 + a_2 + a_3 + \dots$$

mit a_n ≥ 0 heißt alinierende Reihe

4.9.2. Theorem (leibnisches Konvergenzkriterium)

Ist (a_n) eine monoton fallende Nullfolge, dann ist die zugehörige allinische Reihe $\sum_{n=1}^{\infty} (-1)^{n+1}$ a_n konvergent.

Beweis:

Aus a \longrightarrow 0 und $a_1 \ge a_{n+1}$ folgt $a_n \ge 0 \ \forall \ n \in \mathbb{N}$.

Wir schreiben die Partialsumme in der Form

$$s_{2k} = (a_1 - a_2) + (a_3 - a_4) + ... + (2_{2k-1} - a_{2k})$$

 $s_{k+1} = a_1 - (a_2 - a_3) - ... - (a_{2k} - a_{2k+1})$

Dann gilt $s_{2k} \le s_{2k+1}$ und $s_{2k+1} \le s_{2k-1}$ und $0 \le s_{2k} \le s_{2k+1} \le a_1$

Die Folgen $(s_{2k})_{k\in\mathbb{N}}$ und $(s_{2k+1})_{k\in\mathbb{N}}$ sind monoton und beschränkt nach den Konververgenzsatz 4.4.4.

Wegen $|s_{2k+1} - s_{2k}| = s_{2k+1} \rightarrow 0$ haben (s_{2k}) und (s_{2k+1}) den gleichen Limes s.

$$\Longrightarrow S_n \longrightarrow S$$

4.9.3. Beispiele

Die alliminierende harmonische Reihe

$$\sum_{n+1}^{\infty} \frac{(-1)^{n}(n+1)}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

ist nach Theorem 4.9.2. kovergent.

4.10. Absolut konvergente Reihen

4.10.1. Satz

Die Reihe $\sum_{n=1}^{\infty} a_n$ mit $a_n \ge 0$ konvergiert genau dann, wenn die Reihe (d.h. die Folge der Partialsumme) beschränkt ist, also es existiert C > 0 mit $\sum_{k=1}^n a_n$ < C \forall n \in \mathbb{N} .

Beweis:

Die Folge der Partialsumme ist monoton wachsend.

4.10.2. Definition

Die (reelle oder komplexe) Reihen $\sum_{n=1}^{\infty} a_n$ heißt absolut konvergent, wenn die Reihe $\sum_{n=1}^{\infty} |a_n|$ konvergiert. Eine konvergente Reihe, die nicht absolut konvergiert, heißt bedingt konvergent.

4.10.3. Beispiel

Die Reihe $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)}{n}$ ist bedingt konvergent (vgl. 4.8.7. ii.)

4.10.4. Satz

Eine absolut konvergente Reihe $\sum_{n=1}^{\infty} a_n$ ist konvergent und es gilt

$$\left|\sum_{n=1}^{\infty} a_n\right| \leq \sum_{n=1}^{\infty} |a_n|$$

Beweis:

Verwende die Dreiecksungleichung

$$|a_n + a_{n+1} + ... + a_m| \le |a_n| + |a_{n+1}| + |a_{n+2}| + ... + |a_m|$$

und die Cauchy-Kriterium (Satz 4.8.5.)

4.10.5. Defintion

Eine Reihe $\sum_{n=1}^{\infty} c_n$ heißt Majorante der $\sum_{n=1}^{\infty} a_n$, falls es einen Index N $\in \mathbb{N}$ gilt,

$$|a_n| \le c_n \forall n > N$$

4.10.6. Satz (Majorantenkriterium)

Besitzt die Reihe $\sum_{n=1}^{\infty} a_n$ eine konvergente Majorante, dann ist sie absolut konvergent.

Beweis:

Bezeichne die Majorante mit $\sum_{n=1}^{\infty} c_n$. Nehme an, dass $|a_n| \le c_n \ \forall \ n \in \mathbb{N}$. Bezeichne außerdem die Partialsumme mit $s_n = \sum_{k=1}^{\infty} |a_k| \ \text{und} \ +_n = \sum_{k=1}^n c_k$. Dann gilt $+_n \longrightarrow \sum_{k=1}^{\infty} c_k < \infty$ und aus $|a_n|$ folgt $0 \le s_n \le +_n \le + \ \forall \ n \in \mathbb{N}$

Die Folge $\mathbf{s}_{\mathbf{n}}$ ist also monoton steigend und beschränkt. Nach dem monotonen Kovergenzsatz kovergiert sie. Also ist die Reihe $\sum_{n=1}^{\infty} a_{\mathbf{n}}$ absolut konvergent.

4.10.7. Beispiel

Betrachte die Reihe $\sum_{n=1}^{\infty} \frac{n}{k^2}$

$$a_n = \frac{n}{4^n} = \frac{n}{2^n}$$

$$\frac{n}{2n} \le \frac{1}{2n}$$

da $\frac{n}{2^n}$ < 1 \forall n \in \mathbb{N} (Beweise das durch vollständige Induktion)

Also ist die geometrische Reihe $\sum_{n=1}^{\infty}\frac{1}{2^n}$ eine konvergente Majorante. $\sum_{n=1}^{\infty}z^n$ ist absolut konvergent falls |z|<1

4.10.8. Satz (Quotientenkriterium)

Sei $\sum_{n=1}^{\infty} a_n$ eine Reihe mit $a_n \neq 0$ und es gebe ein q mit 0 < q < 1 mit $N \in \mathbb{N}$, so dass

$$\left|\frac{an+1}{an}\right| \le q \ \forall \ n \ge N$$
 (#)

gilt: Dann ist die Reihe $\sum_{n=1}^{\infty} a_n$ absolut kovergent.

Beweis:

Für jedes n = N + p mit $p \in \mathbb{N}$ erhält man durch die induktive Anwendung von (#)

$$|a_n| \le q \cdot |a_{n+1}| \le q^2 \cdot |a_{n-2}| \le q^p |a_n|$$

Also
$$|a_n| \le q^n k$$
 mit $k := q^{-N} |a_N| \in \mathbb{R}$

Damit besitzt $\sum_{n=1}^\infty a_n$ die konvergente Majorante $\sum_{n=1}^\infty (k\cdot \mathbf{q}^n)$

(Weiter die geometrische Majorante)

4.10.9. Beispiel

Betrachte die Reihe $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$

Also
$$a_n = \frac{n^2}{2^n}$$

$$\left|\frac{a\#(n+1)}{2^n}\right| = \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2} = \frac{1}{2} \left(1 + \frac{1}{n}\right)^2 \le \frac{1}{2} \left(1 + \frac{1}{3}\right)^2 = \frac{1}{2} \cdot \left(\frac{1}{3}\right)^2 = \frac{8}{9} < 1 \quad \text{falls } n \ge E$$

Damit ist das Quotientenkriterium für N = 3 erfüllt und $\sum_{n=1}^{\infty} \frac{n^2}{2^n n}$ absolut konvergent und

$$q = \frac{8}{9}$$

4.10.10. Satz (Wurzelkriterium)

- i. Gibt es ein $q \in (0, 1)$ und $N \in \mathbb{N}$, so dass $\sqrt[n]{|a\#n|} \le q \ \forall \ n \ge N$ so ist die Reihe $\sum_{n=1}^{\infty} a_n$ absolut konvergent
- ii. Ist $\sqrt[n]{|a\#n|} \ge 1$ für unendlich viele n, so ist die Reihe $\sum_{n=1}^{\infty} a_n$ divergiert

Beweis:

Siehe Übungen

4.11. Umordung von Reihen

4.11.1. Definition

Seien $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ Reihen mit Gliedern a, $b \in \mathbb{C}$. Wir nennen $\sum_{n=1}^{\infty} b_n$ einen Unordnung von $\sum_{n=1}^{\infty} a_n$ falls es eine bijektive Abbildung $\mathfrak{b} \colon \mathbb{N} \longrightarrow \mathbb{N}$ gibt, so dass $\mathfrak{b}_n = \mathfrak{a}_{\mathfrak{b}(n)} \, \forall \, n \in \mathbb{N}$

6: \mathbb{N} → \mathbb{N} Abbildung gibt, also ordne jeden n ∈ \mathbb{N} eine rationale Zahl 6 (n') zu

Injektiv: Für alle n, $n' \in \mathbb{N}$ n = n' gilt $\delta(n) \neq \delta'(n')$

Surjektiv: Für alle $n \in \mathbb{N}$ gibt es ein $k \in \mathbb{N}$ mit $\delta(k) = n$

Bijektiv: in- und surjektiv

Also: Für $n \in \mathbb{N}$ gibt es ein eindeutiges $k \in \mathbb{N}$ mit 6'(n') = n

1234

3142

$$6(1) = 3$$
, $6(2) = 1$, $6(3) = 4$, $6(4) = 2$

4.11.2. Beispiel

Die Reiche $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ ist konvergent. Betrachte die Glieder für ungerades n für

$$2^k + 1 \le n \le 2^{k+1} - 1$$

Betrachte also alle n ungerade die im Intervall $[2^k, 2^{k+1}]$ liegen.

Ordne der Reihe folgendermaßen um

$$-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}$$

$$+\left(-\frac{1}{3}-\frac{1}{7}\right)+\frac{1}{6}$$
 $k=2$

$$+\left(-\frac{1}{9}-\frac{1}{11}-...\frac{1}{15}\right)+\frac{1}{8}$$
 $k=3$

+ ...

$$+(-\frac{1}{2^{k}+1}-...-\frac{1}{2^{k+1}-1}+\frac{1}{2^{k}+2})$$

Es gilt
$$\left| \left(-\frac{1}{2^{k}+1} - \dots - \frac{1}{2^{k+1}-1} \right) + \frac{1}{2^{k}+2} \right| \ge \frac{1}{4} - \frac{1}{2k+2} \ge \frac{1}{8}$$
 falls $k \ge 3$

Diese Reihe divergiert, weil die Partialsummen nach oben unbeschränkt sind. Konvergierte Reihen darf man also nicht ohne weiteres umordnen. Für absolut konvergente Reihen hat man also den folgen Unordnungssatz

4.11.3. Satz (Unordnungssatz)

Sei $\sum_{n=1}^{\infty} a_n$ eine absolut konvergente Reihe. Dann konvergiert auch jede Unordnung und hat den gleichen Grenzwert

Beweis:

Sei a = $\sum_{n=1}^{\infty} a_n$ und $\mathfrak{G}: \mathbb{N} \longrightarrow \mathbb{N}$ eine bijektive Abbildung. Sei $\mathfrak{E} > 0$ wegen der absoluten Konvergenz $\exists n_0$ mit

$$\sum_{k=n+1}^{\infty} |a_n| < \frac{\varepsilon}{2}$$

Daraus folgt

$$|a - \sum_{n=1}^{\infty} a_n| = |\sum_{k=n+1}^{\infty} a_n| \le \sum_{k=n+1}^{\infty} |a_n| < \frac{\varepsilon}{2}$$

Wähle N so groß, dass $\{\delta(1), ..., \delta(N)\} \supset \{1, ..., n\}$ genau wegen der Bijektivität gibt es $k_1, ... k_{n\#0} \in \mathbb{N}$ mit $\delta(k_i) = j$. Setze N = max $(k_1, ... k_{n\#0})$ hat die geordnete Eigenschaft.

Dann gilt für alle m ≥ N

$$|\left(\sum_{k=1}^{m} a_{6(k)}\right) - \mathsf{a}\,| \, \leq \, |\left|\sum_{k=1}^{m} a_{6(k)} - \sum_{k=1}^{m} a_1\,| \, + \, |\left|\sum_{k=1}^{m} a_2 - \mathsf{a}\,\right| \, \leq \sum_{k=n+|1|}^{m} |\left|a_1\right| + \frac{\varepsilon}{2} < \varepsilon$$

Die ungeordnete Reihe konvergiert also gegen den selben Grenzwert wie die Ausgangsreihe.

Beweis:

Die ungeordnete Reihe konvergiert auch wieder absolut. Wende dazu den obrigen Satz auf die Reihe $\sum_n^m |a_n|_{\rm an.}$

4.11.4. Satz (Cauchy-Produktv von Reihen)

Es seiten $\sum_{n=1}^{\infty}a_{n}$ und $\sum_{n=1}^{\infty}b_{n}$ zwei absolut konvergente Reihen. Setze

$$C_n = \sum_{k=0}^{\infty} a_n b_{n-k} = a_n b_n + a_{n-1} b_{n-1} + ... + a_1 b_1$$

Dann ist die Reihe $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=1}^{\infty} b_n)$

Erklärung:

$$(a_0 + a_1 + a_2 + a_3 + ...) \cdot (b_0 + b_1 + b_2 + b_3 + ...) = \underbrace{a_0 b_0}_{C_0} + \underbrace{a_0 b_1 + b_0 a_1}_{C_1} + a_2 b_0 + a_0 b_2 + ...$$

2.9. Satz (Cauchy-Produkt von Reihen)

Es seiten $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ zwei absolut konvergente Reihen. Setze

$$C_n = \sum_{k=0}^{\infty} a_n b_{n-k} = a_n b_n + a_{n-1} b_{n-1} + ... + a_1 b_1$$

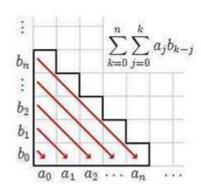
Dann ist die Reihe $\sum_{n=0}^{\infty}c_{\rm n}$ = ($\sum_{n=0}^{\infty}a_{\rm n}$)($\sum_{n=1}^{\infty}b_{\rm n}$)

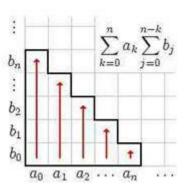
Erklärung:

$$(a_0 + a_1 + a_2 + a_3 + ...) \cdot (b_0 + b_1 + b_2 + b_3 + ...) = \underbrace{a_0 b_0}_{C_0} + \underbrace{a_0 b_1 + b_0 a_1}_{C_0} + a_2 b_0 + a_0 b_2 + ...$$

Beweis:

$$c_n = \sum \{a_k b_l : k + l = n\}$$





$$A_N = \{(k, l) \in \mathbb{N} \ x \ \mathbb{N} \ mit \ k+l \leq N\}$$

$$C_N = \sum_{n=0}^{N} c_n = \sum \{a_k b_l \text{ mit (k, l)} \in \Delta_N$$

$$\mathbf{A_N} = \sum_{n=0}^N a_n$$
 Partialsumme von
$$\mathbf{B_N} = \sum_{n=0}^N b_n$$
 $\sum a_n \text{ und } \sum b_n$

$$A_NB_N = \sum \{a_nb_n \text{ mit } 0 \le k \le N, \ 0 \le l \le N\} = \sum \{a_nb_n \text{ mit } (k,l) \in Q_N\}$$

$$Q_N = \{(k, l) \text{ mit } 0 \le k \le N, 0 \le l \le N\}$$

$$A_NB_N - C_N = \sum \{a_kb_l \text{ mit } (k, l) \in Q_N \setminus \Delta_N\}$$

Um das abzuschalten, setzen wir

$$A_{N}^{*} = \sum_{n=0}^{N} |a_{n}|, B_{N}^{*} = \sum_{n=0}^{N} |b_{n}|$$

Daraus folgt, wegen $Q_N \setminus \Delta_N \subset Q_N \setminus Q_{\lceil N/2 \rceil}$

$$|\, \mathsf{A}_{\mathsf{N}}\mathsf{B}_{\mathsf{N}} - \mathsf{C}_{\mathsf{N}} \,| \, \leq \sum \{\, |\, \mathsf{a}_{\mathsf{n}}| \cdot |\, \mathsf{b}_{\mathsf{n}}| \,\, \text{mit} \,\, (k, \, l) \in Q_{\mathsf{N}} \setminus \mathsf{Q}_{[\mathsf{N}/2]} \} = A_{\mathsf{N}}^* \cdot \, B_{\mathsf{N}}^* \cdot \, A_{[\mathsf{N}/2]}^* \cdot \, B_{[\mathsf{N}/2]}^*$$

Da $\sum a_n$ und $\sum b_n$ absolut konvergieren mit Folgen A_N^* und B_N^* kovergent.

Nach dem Konvergenzterm für Folgen konvergiert dann auch die Folge A_N* B_N*.

Also
$$\forall \ \epsilon > 0 \ \exists \ N_0$$
, so dass $|A_N^* \cdot B_N^* - A_{[N/2]}^* \cdot B_{[N/2]}^*| < \epsilon \ \forall \ N \ge \mathbb{N}_0$

$$\lim_{N \to \infty} (A_N B_N - C_N) = 0$$

Da $\lim_{N\to\infty} (A_N B_N) = \lim_{N\to\infty} (A_N) \cdot \lim_{N\to\infty} (B_N)$ folgt, dass C_N konvergiert und

 $\lim_{N \to \infty} (C_N) \lim_{N \to \infty} (A_N) \lim_{N \to \infty} (B_N)$. Die absolute Konvergenz von $\sum C_N$ enthält man

Unmittelbar indem man das bisher Bewiesene auf die Reihen $\sum |a_N|$ und $\sum |b_N|$ anwendet.

2.10. Das Cauchysche Verdichtungskriterium

Frage: Konvergiert die Reihe $\sum_{n=0}^{\infty} \frac{1}{n\alpha}$ mit $\alpha > 0$.

2.10.1. Satz des Cauchyschen Verdichtungskriterium

Sei (a_n)eine monoton fallende Folge nicht negativer Zahlen, dann konvergiert die Reihe

 $\sum_{n=1}^{\infty}a_{n}$ genau dann, wenn die kondensierte Reihe

$$\sum_{n=0}^{\infty} z^n a_{2^n} = a_1 + 2a_2 + 4a_4 + 8a_8 + \dots$$

konvergiert.

Beweis:

Setze
$$s_n = \sum_{k=0}^n a_k$$
, $t_k = s_n = \sum_{k=0}^N 2^k a_{2\#k}$ dann gilt für $n \le 2^k$ die Abschätzung

$$S_n \le a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + ... + (a_{2^{\wedge}(k-1)-1} + ... + a_{2^{\wedge}k}) \ge$$

$$\geq a_1 + a_2 + 2a_4 + 4a_8 + ... + 2^{(k+1)}a_{2^k} = \frac{1}{2}t_k + \frac{a\#1}{2}$$

Falls s_n konvergiert, so ist $s_k \! \leq C$, und wegen monotoner Konvergenz konfergiert

2.10.2. Korollar

 t_k .

Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^{\infty}}$ konvergiert für $\alpha = 1$ und devergiert für $\alpha \leq 1$.

Beweis:

Die sogenannte kondensierte Reihe ist
$$\sum_{k=0}^{\infty} 2^k \frac{1}{(2^k)^k} = \sum_{k=0}^{\infty} 2^{k-k\alpha} =$$

$$\sum_{k=0}^{\infty} 2^{(1-\alpha)k} = \sum_{k=0}^{\infty} q^k$$
 ist $q=2^{1-\alpha}$ eine bekannte geometrische Reihe

2.11. Die Exponentialreihe

2.11.1. Benennung

Satz 2.4.2. über Cauchy-Folgen gilt auch für komplexe Folgen

Beweis:

Sei (z_n) eine komplexe Folge $z_n = x_n + iy_n$ ist x_n ReZ und y_n ImZ.

$$d(z_n, z_n) = |z_n - z_n| = \sqrt{(x \# n - y \# n)^2 + (x \# n - y \# n)^2}$$

Sei z_n eine Cauchy-Folge, also \forall $\epsilon > 0$ \exists N mit $|z_n$ - $z_m| < \epsilon$ \forall n, $m \ge N$

$$\Rightarrow |x_n - x_m| < \varepsilon \text{ und } |y_n - y_m| < \varepsilon$$

Also sind (x_n) und (y_n) Cauchy-Folgen. Nach Satz 2.4.2. gilt $x_n \rightarrow x$, $y_n \rightarrow y$

Behauptung:

$$Z_n \longrightarrow x + iy = z$$

Beweis:

$$\begin{aligned} |z_n - z| &= \sqrt{(x \# n - x)^2 + (y \# n - y)^2} \le |x_n - x| + |y_n - y| \longrightarrow 0 \\ (|x_n - x| + |y_n - y|)^2 &= |x_n - x|^2 + 2 \cdot |x_n - x| \cdot |y_n - y| + |y_n - y|^2 \\ &\ge |x_n - x|^2 + |y_n - y|^2 \ge 0 \\ &\Longrightarrow |x_n - x| + |y_n - y| \ge \sqrt{(x \# n - x)^2 + (y \# n - y)^2} \ge 0 \end{aligned}$$

oder eleganter:

$$|z_n - z| = |(x_n - x) + i \cdot (y_n - y)| \le |x_n - x| + |i \cdot (y_n - y)| = |x_n - x| + |y_n - y|$$

Wir betrachten nun für $z \in \mathbb{C}$ die Exponentialreihe $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

2.11.2. Satz

Die Exponentialreihe ist absolut konvergent.

Beweis:

Wir wenden das Quotientenkriterium (Satz 2.8.8.) an mit $a_n = \frac{z^n}{n!}$

$$|\frac{a^{\#(n+1)}}{a^{\#n}}| = |\frac{z^{n+1}}{(n+1)!}| \cdot |\frac{n!}{z^n}| = \frac{|z|}{(n+1)} \le \frac{1}{2} \quad \text{ falls } n+1 > 2|z|$$

Nun ist die Eulesche Zahl e definiert durch:

$$e = \exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!}$$

2.11.3. Benennung

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

$$f_n = \sum_{k=0}^{n} {n \choose k} \frac{1}{n^k} = 1 + n \cdot \frac{1}{n^k} + \frac{n \cdot (n-1)}{2} \cdot \frac{1}{n^k} + \dots + \frac{n \cdot (n-1)}{n!} \cdot \frac{1}{n^k} =$$

$$= 1 + 1 + \frac{1}{2!} \cdot (1 - \frac{1}{n}) + \dots + \frac{1}{n!} (1 - \frac{1}{n}) \cdot (1 - \frac{2}{n}) \cdot \dots \cdot (1 - \frac{n-1}{n})$$

$$\leq 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right)^n \leq 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} = s_n \rightarrow e$$

Umgekehrt ist für $k \ge n$

$$f_k > 1 + 1 + \frac{1}{2!} \cdot (1 - \frac{1}{k}) + \dots + \frac{1}{k} \cdot (1 - \frac{1}{k}) \cdot (1 - \frac{2}{k}) \cdot \dots \cdot (1 - \frac{n-1}{k})$$

(lasse alle weiteren Summanden weg)

$$\xrightarrow{k \to \infty} 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} = s_n$$

Insgesamt $s_n \le f_k < e = \lim_{n \to \infty} (s_n)$ falls $k \ge n$

Sei E > 0, da $s_n \rightarrow e$ gibt es N mit $|e - s_n| < E \ \forall \ n \ge N$

$$\Rightarrow$$
 e - ε < f_k < e \forall k \geq N

Da \mathcal{E} beliebig gewählt werden kann, folgt $f_k \rightarrow e$

2.11.4. Theorem

i.
$$\exp(z) = \exp(z)$$

ii.
$$\exp(z_1) \cdot \exp(z_2) = \exp(z_1 + z_2)$$

Beweis:

i.
$$\sum_{k=0}^{n} \frac{z^k}{k!} = \sum_{k=0}^{n} \frac{z^k}{k!}$$
 (z ist überstrichen) $\Longrightarrow \underline{\exp(z)} = \exp(\underline{z})$

ii. Wende die Cauchysche Produktformel an:

$$\exp(\mathbf{z}_1) = \sum_{n=0}^{\infty} \frac{z^{n+1}}{n!}$$

$$\exp(\mathbf{z}_2) = \sum_{n=0}^{\infty} \frac{z^n \# 2}{n!}$$

$$c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{k=0}^n \frac{z^{k+1}}{k!} \cdot \frac{z^{n-k+2}}{(n-k)!} = \frac{(z^{n+2})^n}{n!}$$

Nach Satz 2.9.4. ist
$$\sum_{k=0}^{\infty} c_n = (\sum_{k=0}^{\infty} a_n) \cdot (\sum_{k=0}^{\infty} b_n) = \exp(z_1) \cdot \exp(z_2)$$

Wir stellen einige Folgerungen zusammen:

a)
$$\exp(z) \neq 0$$
 $\forall z \in \mathbb{C} \text{ und } \frac{1}{\exp(z)} = \exp(-z)$

Nach Theorem 2.11.4. ii. wissen wir, dass $\exp(z) \cdot \exp(-z) = \exp(0) = \sum_{k=0}^{\infty} \frac{0^k}{n!} = 1$

Also
$$\frac{1}{\exp(z)} = \exp(-z)$$

$$\exp(z) = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots$$

$$\exp(0) = 1 + \frac{0}{1!} + \frac{\frac{2}{0!}}{2!} + \dots = 1$$

b) $\exp(n) = e^n = \underbrace{e \cdot e \cdot e \cdot ... \cdot e}_{\text{ }} \text{ mit } n \in \mathbb{N} \text{ folgt aus Theorem 2.11.4.}$ $\underbrace{n - \text{Faktoren}}$