
Genomik und Bioinformatik I Projekt 1 Andreas Loibl

1 Identify languages by text analysis (Projekt 1)

1.1 A program that distinguishes Swedish from Norwegian

example texts As example texts to work with I have fetched ∼20MB of data from Wikipedia
using a shellscript that downloads the list of the “excellent articles” in the Norwegian and Swedish
Wikipedia (currently ∼200 articles each) and strips the relevant text out of the downloaded HTML-
sourcecode (total word count of all wikipedia samples after processing: 2 million words)

In order to try the “extra challange” I additionally fetched example texts from “bild.de” and
“faz.net” using a shellscript that downloaded the RSS-feeds of the newspaper-websites and fetched
all its articles (∼40 articles fetched) and stripped the relevant text out of the HTML-sourcecode.

All the sample texts were stored as several text-files in a directory for each language (“no/”, “sv/”)
and newspaper (“bild/”, “faz/”) for later use (statistics!)

differential language features In order to find features that differ from language to language I
wrote a script that analyzed the frequency of several things (most frequent words, most frequent
characters and most frequent two-character-combinations). By looking at the data I concluded
that the two-character-combinations could allow me to differenciate the languages from each other,
because there was a visible difference in the order of the most frequent ones.

So I took the relative frequencies of the most frequent two-character-combinations and made a
graph out of it (see Figure 1)

Figure 1: relative frequencies of the most frequent two-character-combinations of Norwegian (yel-
low) and Swedish (green) texts

My idea how to diffenenciate the languages from each other was now to compare the relative

1

Genomik und Bioinformatik I Projekt 1 Andreas Loibl

frequencies of the two-character-combinations which showed the highest deviation for particular
languages in the graph.

So I wrote a initial R program that compared the frequency of “oc”, “og” (and “ei” for German,
for the “extra challange”) in a given file.

testing Then I wrote a script that called my inital R program several times with a portion of
text of different length for each language and summed up the results.

I put these results into a graph (see Figure 2), then I tried to improve my R program using the
results I got out of the graph and repeated the test run...

Figure 2: recognition results of the initial program with random Swedish (red) sample text por-
tions with various lengths from 10 to 1000 characters

I repeated to improve and test the program until the graph showed a better recognition rate
than the initial graph (see Figure 3): I adjusted the limits of the relative frequencies (i.e. how
much percentage points are necessary for the relative frequency of a two-character-combination
to identify a language) and I added a fallback routine which is called when the language couldn’t
be identified in the first run. This routine is just like the main one, but it searches for other
language-specific two-character-combinations (as you can see in Figure 1 there are more than just
“og” and “oc”, in my case I’m using “ar” and “se”). This fallback routine increases the possibility
for a short text to be identified, because especially in short texts there might be no occourrences
of “og” and “oc” at all, and without this fallback it would simply not get identified, whereas with
this fallback it has got a “second chance”.

error rates The estimated error rates are (roughly) apparent from the graph of Figure 3, but
here are the values for the lengths 20, 200 and 2000 (as requested):

2

Genomik und Bioinformatik I Projekt 1 Andreas Loibl

Figure 3: recognition results of the improved program with random Swedish (red) sample text
portions with various lengths from 10 to 1000 characters

length language identified correctly identified incorrectly not identified # tests
20 Swedish 134 (26%) 16 (3.2%) 349 (69.8%) 500
20 Norwegian 101 (20.2%) 52 (10.4%) 346 (69.2%) 500
200 Swedish 245 (81.6%) 40 (13.3%) 14 (4.6%) 300
200 Norwegian 236 (78.6%) 43 (14.3%) 20 (6.6%) 300
2000 Swedish 190 (95%) 9 (4.5%) 0 (0%) 200
2000 Norwegian 191 (95.5%) 8 (4%) 0 (0%) 200

limitations

� the alogrithm uses statistical analysis which can never detect the language for sure, you can
only assume that for a certian probability (depending on factors like length, type of text,
...) the computed result is right.

� the shorter the portion of text is the lower the probability of a correct language detection is
(see graph Figure 3 or table error rates)

� if the text contains large amounts of non-language-elements (like names, formulas or other
data) the detection is likely to be wrong because these non-language-elements can’t be
stripped out and will be used for language detection, which may falsify the result.

3

Genomik und Bioinformatik I Projekt 1 Andreas Loibl

1.2 “Extra challenge“: distinguish texts taken from the FAZ from those you
find in Bild

algorithm This algorithm is based on the assumption that a text with a high count of ”?” and
”!” is likely to be a ”Bild”-text, because Bild quite often uses sensational expressions, in contrast
to the FAZ, which uses a more complex and less emotional language.

error rates The error rates for distinguishing Bild from FAZ are worse than those for Swedish
from Norwegian (see Figures 4 and 5). Much longer texts are needed to be able to identify either
Bild or FAZ.

Figure 4: recognition results with random Bild (red) sample text portions with various lengths
from 10 to 1000 characters

4

Genomik und Bioinformatik I Projekt 1 Andreas Loibl

Figure 5: recognition results with random FAZ (blue) sample text portions with various lengths
from 10 to 1000 characters

Listing 1: projekt1.R

1 #!/usr/b in/Rscr ip t
2 # Genomik und Bio in format ik I
3 # Pro jek t 1 (I d e n t i f y languages by t e x t ana l y s i s)
4 # wr i t t en by Andreas Lo i b l (enro l lment no . 1524148)
5

6 source (f i l e=”readText .R”)
7

8 # identifyGermanNewspaper :
9 ###########################

10 # d i s t i n g u i s h e s t e x t s from the German newspapers FAZ and Bi ld by ana l y z ing
11 # the r e l a t i v e f requency o f punctuat ion marks in the t e x t . This a l gor i thm
12 # i s based on the assumption a t e x t wi th a h igh count o f ”?” and ” ! ” i s
13 # l i k e l y to be a ”Bi ld”− t e x t , because Bi ld q u i t e o f t en uses s en s a t i ona l
14 # expre s s i on s .
15 #
16 # So t h i s f unc t i on i s a b l e to dec ide i f the g i ven t e x t i s taken from Bi ld
17 # or from FAZ (or gener i c ”Text” i f the data i s not d i s t i n g u i s h a b l e enough

)
18

19 identifyGermanNewspaper <− function (inputText) {
20 count <− numeric ()
21 for (i in c (” ! ” , ”\\?” , ” \\ . ” , ” , ”)) {
22 tmp <− unlist (gregexpr (i , inputText))
23 i f (tmp [1] > 0) count [i] <− length (tmp) else count [i] <− 0
24 }
25 i f (sum(count)>5) {
26 i f ((count [”\\?”]+count [” ! ”]) /sum(count) > 0 . 1) return (”Bi ld ”)
27 i f ((count [”\\?”]+count [” ! ”]) /sum(count) < 0 . 05) return (”FAZ”)

5

Genomik und Bioinformatik I Projekt 1 Andreas Loibl

28 print (”Data i s not d i s t i n g u i s h ab l e enough . ”)
29 return (”Text”)
30 } else {
31 print (”No or not enough p ro c e s s ab l e data found . ”)
32 return (”Text”)
33 }
34 }
35

36 # iden t i f yLanguageOfF i l e :
37 ##########################
38 # d i s t i n g u i s h e s the language o f a f i l e by us ing t e x t ana l y s i s on i t s

content .
39 #
40 # the a l gor i thm counts the occurrences o f s e v e r a l character−combinat ions
41 # (l i k e ”oc ” , ”og ” , ” e i ” , ”ar ” , ” se ”) and e s t ima t e s what language the t e x t
42 # i s wr i t t en in by comparing the r e l a t i v e f r equencys o f t h e s e character−
43 # combinat ions wi th va l u e s .
44

45 i dent i fyLanguageOfF i l e <− function (f i l e) {
46 inputText <− readText (f i l e)
47 count <− numeric ()
48 for (i in c (”og” , ”oc” , ” e i ”)) {
49 tmp <− unlist (gregexpr (i , inputText))
50 i f (tmp [1] > 0) count [i] <− length (tmp) else count [i] <− 0
51 }
52 i f (sum(count)>0) {
53 i f ((count [”og”]) /sum(count) > 0 . 40) return (”Norwegian”)
54 i f ((count [” oc”]) /sum(count) > 0 . 50) return (”Swedish”)
55 i f ((count [” e i ”]) /sum(count) > 0 . 45) return (paste (”German” , ” (” ,

identifyGermanNewspaper (inputText) , ”) ”))
56 }
57 count <− numeric ()
58 for (i in c (” ar ” , ” se ”)) {
59 tmp <− unlist (gregexpr (i , inputText))
60 i f (tmp [1] > 0) count [i] <− length (tmp) else count [i] <− 0
61 }
62 i f (sum(count)>0) {
63 i f ((count [” ar ”]) /sum(count) > 0 . 65) return (”Swedish”)
64 i f ((count [” se ”]) /sum(count) > 0 . 65) return (”Norwegian”)
65 print (”Data i s not d i s t i n g u i s h ab l e enough . ”)
66 return (FALSE)
67 }
68 print (”No pro c e s s ab l e data found . ”)
69 return (FALSE)
70 }
71

72 for (f i l e in commandArgs(TRUE)) print (ident i fyLanguageOfF i l e (f i l e))

6

	Identify languages by text analysis (Projekt 1)
	A program that distinguishes Swedish from Norwegian
	``Extra challenge``: distinguish texts taken from the FAZ from those you find in Bild

