Exercise 20: Walking the Grid

Andreas Loibl

November 10, 2010

Inhaltsverzeichnis

(1) The problem

- Thoughts
- Algorithm
(2) Answer

Thoughts

- the path through the grid can be expressed as a sequence of "right" and "down" directions
- the path through the grid can be expressed as a sequence of "right" and "down" directions
- the grid is quadratic so there will be the same amount of "right" directions as "down" directions
- the path through the grid can be expressed as a sequence of "right" and "down" directions
- the grid is quadratic so there will be the same amount of "right" directions as "down" directions
- the total count of directions is always $2 \cdot$ sidelength (one sidelength "right" and one sidelength "down")
- the path through the grid can be expressed as a sequence of "right" and "down" directions
- the grid is quadratic so there will be the same amount of "right" directions as "down" directions
- the total count of directions is always 2 . sidelength (one sidelength "right" and one sidelength "down")
- so all possible paths can be expressed as the permutation of something like \{right, right, right, right, down, down, down, down\} (for a 4×4 grid in this case)
- the path through the grid can be expressed as a sequence of "right" and "down" directions
- the grid is quadratic so there will be the same amount of "right" directions as "down" directions
- the total count of directions is always $2 \cdot$ sidelength (one sidelength "right" and one sidelength "down")
- so all possible paths can be expressed as the permutation of something like \{right, right, right, right, down, down, down, down\} (for a 4×4 grid in this case)
- using the combinatorics formula for permutations you get the total number of possible paths as the following:

$$
\frac{(2 n)!}{n!\cdot n!} \quad(n: \text { side length })
$$

- to put this into a algorithm (i.e. do not simply use R's "factorial()" function) this equation can be written as a series representation:

$$
a_{n}=\frac{(2 n)!}{(n!)^{2}}
$$

- to put this into a algorithm (i.e. do not simply use R's "factorial()" function) this equation can be written as a series representation:

$$
\begin{gathered}
a_{n}=\frac{(2 n)!}{(n!)^{2}} \\
a_{n-1}=\frac{(2(n-1))!}{((n-1)!)^{2}}
\end{gathered}
$$

- to put this into a algorithm (i.e. do not simply use R's "factorial()" function) this equation can be written as a series representation:

$$
\begin{gathered}
a_{n}=\frac{(2 n)!}{(n!)^{2}} \\
a_{n-1}=\frac{(2(n-1))!}{((n-1)!)^{2}} \\
\frac{a_{n}}{a_{n-1}}=\frac{(2 n)!}{(2(n-1))!} \cdot \frac{((n-1)!)^{2}}{(n!)^{2}}
\end{gathered}
$$

- to put this into a algorithm (i.e. do not simply use R's "factorial()" function) this equation can be written as a series representation:

$$
\begin{gathered}
a_{n}=\frac{(2 n)!}{(n!)^{2}} \\
a_{n-1}=\frac{(2(n-1))!}{((n-1)!)^{2}} \\
\frac{a_{n}}{a_{n-1}}=\frac{(2 n)!}{(2(n-1))!} \cdot \frac{((n-1)!)^{2}}{(n!)^{2}} \\
=\frac{(2 n)!}{(2 n-2)!} \cdot \frac{(n-1)!}{n!} \cdot \frac{(n-1)!}{n!}
\end{gathered}
$$

- to put this into a algorithm (i.e. do not simply use R's "factorial()" function) this equation can be written as a series representation:

$$
\begin{gathered}
a_{n}=\frac{(2 n)!}{(n!)^{2}} \\
a_{n-1}=\frac{(2(n-1))!}{((n-1)!)^{2}} \\
\frac{a_{n}}{a_{n-1}}=\frac{(2 n)!}{(2(n-1))!} \cdot \frac{((n-1)!)^{2}}{(n!)^{2}} \\
=\frac{(2 n)!}{(2 n-2)!} \cdot \frac{(n-1)!}{n!} \cdot \frac{(n-1)!}{n!}=\frac{2 n(2 n-1)}{n^{2}}
\end{gathered}
$$

- to put this into a algorithm (i.e. do not simply use R's "factorial()" function) this equation can be written as a series representation:

$$
\begin{gathered}
a_{n}=\frac{(2 n)!}{(n!)^{2}} \\
a_{n-1}=\frac{(2(n-1))!}{((n-1)!)^{2}} \\
\frac{a_{n}}{a_{n-1}}=\frac{(2 n)!}{(2(n-1))!} \cdot \frac{((n-1)!)^{2}}{(n!)^{2}} \\
=\frac{(2 n)!}{(2 n-2)!} \cdot \frac{(n-1)!}{n!} \cdot \frac{(n-1)!}{n!}=\frac{2 n(2 n-1)}{n^{2}} \\
a_{n}=a_{n-1} \cdot \frac{2 n(2 n-1)}{n^{2}}
\end{gathered}
$$

Algorithm

in Pseudocode
function NUMBEROFGRIDROUTES(n)
if $n<2$ then
\triangleright termination condition
return 2
end if
return NUMBEROFGRIDROUTES $(n-1) \cdot \frac{2 n(2 n-1)}{n^{2}} \triangleright$ recursion end function

in Pseudocode

function NUMBEROFGRIDROUTES(n)
if $n<2$ then
\triangleright termination condition return 2
end if
return NUMBEROFGRIDROUTES $(n-1) \cdot \frac{2 n(2 n-1)}{n^{2}} \triangleright$ recursion end function

in Pseudocode

function NUMBEROFGRIDROUTES(n)
if $n<2$ then $\quad \triangleright$ termination condition return 2
end if
return NUMBEROFGRIDROUTES $(n-1) \cdot \frac{2 n(2 n-1)}{n^{2}} \triangleright$ recursion end function

in R code

number_of_grid_routes $<-$ function (n)
\{
if ($\mathrm{n}<2$) return (2)
return (number_of_grid_routes $(\mathrm{n}-1) *(2 * \mathrm{n} *(2 * \mathrm{n}$ -1)) / (n * n)) ;
\}

Question

How many routes are there for a side of length 6,12 or 18 ?
$>$ source("ex20_walking_the_grid.R")
$>$ number_of_grid_routes (6)
[1] 924
$>$ number_of_grid_routes (12)
[1] 2704156
> number_of_grid_routes(18)
[1] 9075135300

Answer

There are 924, 2,704,156 and $\mathbf{9 , 0 7 5 , 1 3 5 , 3 0 0}$ routes for a side length of 6,12 and 18 .

