Exercise 19: Consecutive digits

Andreas Loibl

November 10, 2010

Inhaltsverzeichnis

(1) Collatz sequence

- Definition
- Algorithm
(2) Proof of Collatz Problem

Collatz sequence

Collatz Problem

The Collatz function is defined as

$$
f(x)= \begin{cases}\frac{x}{2} & \text { if } x \text { is even } \\ 3 x+1 & \text { if } x \text { is odd }\end{cases}
$$

The Collatz sequence uses this function recursively, until $f\left(c_{n}\right)=1$

$$
c_{n+1}=f\left(c_{n}\right)
$$

starting with $c_{0}=13$ we generate the following sequence:
$c_{0,1,2, \ldots}=13,40,20,10,5,16,8,4,2,1$
function Collatz(n)
output n
if $n<2$ then
return
end if
if $n \bmod 2=0$ then
COLLATZ $\left(\frac{n}{2}\right)$
\triangleright termination condition else
$\operatorname{COLLATZ}(3 n+1)$
end if

in Pseudocode

function $\operatorname{COLLATZ}(n)$
output n
if $n<2$ then
return
end if
if $n \bmod 2=0$ then
$\operatorname{COLLATZ}\left(\frac{n}{2}\right) \quad \triangleright$ recursion
else
COLLATZ $(3 n+1)$
end if

in Pseudocode

function COLLATZ(n)
output n
if $n<2$ then return
end if
if $n \bmod 2=0$ then
COLLATZ $\left(\frac{n}{2}\right)$
else
COLLATZ $(3 n+1)$
end if
end function
\triangleright termination condition

in Pseudocode

function $\operatorname{COLLATZ}(n)$
output n
if $n<2$ then return
end if
if $n \bmod 2=0$ then
else
COLLATZ $(3 n+1)$
end if
end function
\triangleright even or odd
\triangleright termination condition
> recursion

in Pseudocode

function COLLATZ(n)
output n
if $n<2$ then return
end if
if $n \bmod 2=0$ then
$\operatorname{COLLATZ}\left(\frac{n}{2}\right)$
\triangleright even or odd
\triangleright recursion
else
$\operatorname{COLLATZ}(3 n+1)$
end if
end function

Algorithm

in R code

```
collatz <- function(n)
{
\[
\begin{aligned}
& \text { print }(\mathrm{n}) \\
& \text { if }(\mathrm{n}<2) \text { return (FALSE) } \\
& \text { if }(\mathrm{n} \% \% \\
& 2==0) \\
& \\
& \\
& \text { collatz }(\mathrm{n} / 2)
\end{aligned}
\]
else
\[
\text { collatz }(3 * n+1)
\]
```

\}

in R code (returning a vector)

```
collatz <- function(n)
{
```

```
if(n<2) return(1)
```

if(n<2) return(1)
if (n %% 2==0)
if (n %% 2==0)
return(c(n, collatz(n/2)))
return(c(n, collatz(n/2)))
else

$$
\text { return }(\mathbf{c}(\mathrm{n}, \quad \text { collatz }(3 * n+1)))
$$

```
\}

\section*{Proof of Collatz Problem}

\section*{Proof of Collatz Problem I}

We prove the Collatz conjecture, by trying to complete an incomplete sequence, and eliminating out the contradictions. We also check and eliminate out the possibility of an infinite loop. In the end we show that every integer has a finite stopping time, which in other words solves the Collatz conjecture.
Consider the function
\[
f(x)= \begin{cases}\frac{x}{2} & \text { if } x \text { is even } \\ 3 x+1 & \text { if } x \text { is odd }\end{cases}
\]

The Collatz conjecture states that there exists an integer \(d(\geq 0)\) corresponding to \(x\) such that \(f^{d}(x)=1\) for all natural numbers \(x\) where \(f^{d}(x)=f(f(f(\ldots d\) times \(\ldots(f(f(f(x)))))))\)

\section*{Proof of Collatz Problem II}

Considering only odd integers: Now if we consider only odd integers of the Collatz sequence, and modify the function as follows
\[
T(x)=\frac{(3 x+1)}{2^{k}}
\]
where k is the highest power of 2 that divides \(3 x+1\) If we can prove that for all odd integers the stopping time corresponding to \(T(x)\) is finite, then the Collatz problem is proved. Consider a given incomplete sequence \(a_{1}, a_{2}, \ldots, a_{m}\), where \(a_{k}=T^{k}\left(a_{1}\right)\), and \(a_{1}\) is the minimum among \(a_{1}, \ldots, a_{m}\). Then we shall have \(2^{S_{m}}=\left(3+\frac{1}{a_{1}}\right)\left(3+\frac{1}{a_{1}}\right) \ldots\left(3+\frac{1}{a_{1}}\right) \frac{a_{1}}{a_{m+1}}\)
But since \(a_{1}\) is mimimum, hence, we shall,
\[
\begin{equation*}
2^{S_{m}}<\left(3+\frac{1}{a_{1}}\right)^{m} \frac{a_{1}}{a_{m+1}} \tag{1}
\end{equation*}
\]

\section*{Proof of Collatz Problem III}

Now lets suppose
\[
\begin{gather*}
a_{m+1}<a_{1}  \tag{2}\\
\frac{3^{m}}{2^{S_{m}}} a_{1}+\frac{c_{m}}{2^{S_{m}}}<a_{1} \tag{3}
\end{gather*}
\]

Now, for \(m>3, c_{m}>3^{m}\), hence we have
\[
\begin{align*}
& \frac{3^{m}}{2^{S_{m}}} a_{1}+\frac{3^{m}}{2^{S_{m}}}<a_{1}  \tag{4}\\
& \frac{3^{m}}{2^{S_{m}}}\left(a_{1}+1\right)<a_{1}  \tag{5}\\
& 3^{m}\left(\frac{1+a_{1}}{a_{1}}\right)<2^{S_{m}} \tag{6}
\end{align*}
\]

\section*{Proof of Collatz Problem IV}

From (1) and (6) we have
\[
\begin{equation*}
3^{m}\left(\frac{1+a_{1}}{a_{1}}\right)<\left(3+\frac{1}{a_{1}}\right)^{m} \frac{a_{1}}{a_{m+1}} \tag{7}
\end{equation*}
\]

From (7) we get after rearranging the terms
\[
\begin{equation*}
3^{m}\left(a_{1}^{2}-a_{1} a_{m+1}-a_{m+1}\right)+{ }^{m} C_{1} 3^{m-1} a_{1}+\ldots+\frac{{ }^{m} C_{m}}{a_{1}^{m-2}}>0 \tag{8}
\end{equation*}
\]

Here by (2) we have the equation
\[
\begin{equation*}
\text { L.H.S }>3^{m}\left(-a_{m+1}\right)+{ }^{m} C_{1} 3^{m-1} a_{1}+\ldots+\frac{{ }^{m} C_{m}}{a_{1}^{m-2}} \tag{9}
\end{equation*}
\]

\section*{Proof of Collatz Problem V}

Which reduces to the equation (10) if we assume (11) to be true
\[
\begin{gather*}
\left(m a_{1}-3 a_{m+1}\right)+\frac{2^{m}-m-1}{3^{m-1} a_{1}^{m-2}}>0 \\
3^{m}\left(-a_{m+1}\right)+{ }^{m} C_{1} 3^{m-1} a_{1}+\ldots+\frac{{ }^{m} C_{m}}{a_{1}^{m-2}}>\left(m a_{1}-3 a_{m+1}\right)+\frac{2^{m}-m-1}{3^{m-1} a_{1}^{m-2}}>0 \tag{11}
\end{gather*}
\]

Now for \(m>3\)
\[
\begin{equation*}
\frac{2^{m}-m-1}{3^{m-1} a_{1}^{m-2}}<1 \tag{12}
\end{equation*}
\]

Hence,
\[
\begin{equation*}
\left(m a_{1}-3 a_{m+1}\right)>0 \tag{13}
\end{equation*}
\]
which is true since \(m>3\) and \(a_{1}>a_{m+1}\)

\section*{Proof of Collatz Problem VI}

Statement 1 Hence, we get from (1) and (2) and assumption (11), the equation (12) which is true. If (1), (2) or (11) was false, (12) would also have been false. Hence, (2) as well as (12) is true. So we can state that, for any arbitrary number \(a_{1}\) there exists \(m>3\) such that \(a_{m+1}<a_{1}\). Which, obviously, gives a hint that all integers have a finite stopping time.
Now consider, if for all \(m \geq 1\)
\[
\begin{gather*}
a_{m+1}>a_{1}  \tag{14}\\
\frac{3^{m}}{2^{S_{m}}} a_{1}+\frac{c_{m}}{2^{S_{m}}}>a_{1} \tag{15}
\end{gather*}
\]

But, for \(m \geq 1\)
\[
\begin{equation*}
\frac{3^{m}}{2^{S_{m}}} a_{1}+\frac{m 4^{m-1}}{2^{S_{m}}} \geq \frac{3^{m}}{2^{S_{m}}} a_{1}+\frac{c_{m}}{2^{S_{m}}} \tag{16}
\end{equation*}
\]

\section*{Proof of Collatz Problem VII}

Therefore,
\[
\begin{equation*}
\frac{3^{m}}{2^{S_{m}}} a_{1}+\frac{m 4^{m-1}}{2^{S_{m}}}>a_{1} \tag{17}
\end{equation*}
\]

Implies,
\[
\begin{equation*}
a_{1}<\frac{m 4^{m-1}}{2^{S_{m}}-3^{m}} \tag{18}
\end{equation*}
\]

Which in turn, implies,
\[
\begin{equation*}
a_{1}<m 4^{m-1} \tag{19}
\end{equation*}
\]

Since \(2^{S_{m}}-3^{m} \geq 1\) for all \(m \geq 1\)
But here, \(a_{1}\) is arbitraily chosen, and doesn't depend on the value of \(m\) Hence, (19) does not hold true for all \(m\). So, our assumption \(a_{m+1}>a_{m}\) for all \(m \geq 1\), must be wrong

\section*{Proof of Collatz Problem VIII}

This gives us an indication that any infinite trajectory cannot have a minimum \(a_{1}\). Which is clearly impossible. Hence, infinite trajectories do not exist. Considering the fact that infinite trajectories do not exist, we may say from Statement 1 that \(m>3\) has a finite value. All of the above sums up to the fact, that every number has a finite stopping time. q.e.d.

\section*{... just kidding \(\odot\)}

This was just a load of crap, the Collatz Problem remains unproven.```

